6533b856fe1ef96bd12b27ca

RESEARCH PRODUCT

Inflammation-Induced Alteration of Astrocyte Mitochondrial Dynamics Requires Autophagy for Mitochondrial Network Maintenance

Silvana HreliaGiorgio Cantelli-fortiJulien PuyalBenedikt BerningerBenedikt BerningerNicolas ToniMatteo BergamiMatteo BergamiKonstanze F. WinklhoferElisa MotoriMagdalena GötzAlexander GhanemKarl Kklaus ConzelmannMarco MalagutiCristina Angeloni

subject

MaleLipopolysaccharidesPhysiologyDnm1l protein mouseInterleukin-1betaNitric Oxide Synthase Type IIMitochondrionAstrocytes/metabolismMitochondrial DynamicsAutophagy-Related Protein 7Mice0302 clinical medicinemetabolism [Reactive Oxygen Species]PhosphorylationCells Culturedcytology [Astrocytes]0303 health sciencesmetabolism [Inflammation]metabolism [Astrocytes]Inflammation/metabolismCytokines/metabolismdrug effects [Mitochondria]Mitochondria/drug effectsMitochondriaCell biologyAstrocytes/drug effectsmedicine.anatomical_structureMicrotubule-Associated Proteins/metabolismPhosphorylationCytokinesmetabolism [Dynamins]Nitric Oxide Synthase Type II/metabolismMicrotubule-Associated ProteinsAstrocytegenetics [Microtubule-Associated Proteins]DynaminsProgrammed cell deathAstrocytes/cytologydrug effects [Astrocytes]Mice TransgenicBiologypharmacology [Interferon-gamma]Proinflammatory cytokine03 medical and health sciencesInterferon-gammametabolism [Interleukin-1beta]reactive astrocytesReactive Oxygen Species/metabolismddc:570Mitochondria/metabolismtoxicity [Lipopolysaccharides]medicineAutophagyAnimalsAutophagy-Related Protein 7Molecular BiologyNeuroinflammation030304 developmental biologypathology [Inflammation]Dynamins/metabolismInflammationdrug effects [Mitochondrial Dynamics]Autophagymetabolism [Cytokines]Interferon-gamma/pharmacologyCell Biologymetabolism [Microtubule-Associated Proteins]Microtubule-Associated Proteins/geneticsMitochondrial Dynamics/drug effectsmetabolism [Mitochondria]metabolism [Nitric Oxide Synthase Type II]Mice Inbred C57BLLipopolysaccharides/toxicityAtg7 protein mouseAstrocytesInterleukin-1beta/metabolismReactive Oxygen Species030217 neurology & neurosurgeryInflammation/pathology

description

Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect was triggered by Drp1 phosphorylation and ultimately resulted in reduced respiratory capacity. Furthermore, maintenance of the mitochondrial architecture critically depended on the induction of autophagy. Deletion of Atg7, required for autophagosome formation, prevented the reestablishment of tubular mitochondria, leading to marked reactive oxygen species accumulation and cell death. Thus, our data reveal autophagy to be essential for regenerating astrocyte mitochondrial networks during inflammation.

10.1016/j.cmet.2013.11.005http://dx.doi.org/10.1016/j.cmet.2013.11.005