6533b856fe1ef96bd12b2872
RESEARCH PRODUCT
Predetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system
Angela GiangrandeBenjamin AltenheinChristian M. Von HilchenÁLvaro E. BustosGerhard M. Technausubject
Cell typeCell tracingCellular differentiation[SDV]Life Sciences [q-bio]Biology03 medical and health sciences0302 clinical medicineFlybowmedicineAnimalsDrosophila ProteinsGlial sheathsMolecular BiologyMitosis[SDV.BDD]Life Sciences [q-bio]/Development BiologyResearch Articles030304 developmental biologyProgenitorHomeodomain Proteins0303 health sciencesMicroscopy ConfocalHyperplasiafungiEmbryoCell DifferentiationAnatomyHypertrophyEmbryonic stem cellImmunohistochemistryCell biology[SDV] Life Sciences [q-bio]medicine.anatomical_structurePeripheral nervous systemNeurogliaDrosophilaPeripheral nervous systemNeuroglia030217 neurology & neurosurgeryCell-specific mitotic abilitiesDevelopmental Biologydescription
International audience; One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial sheaths is not known. We used the Flybow system to label and identify each individual ePG in the living embryo and followed them into third instar larva. We demonstrate that all ePG persist until the end of larval development and some even to adulthood. We uncover the origin of all three glial sheaths and describe the larval differentiation of each peripheral glial cell in detail. Interestingly, just one ePG (ePG2) exhibits mitotic activity during larval stages, giving rise to up to 30 glial cells along a single peripheral nerve tract forming the outermost perineurial layer. The unique mitotic ability of ePG2 and the layer affiliation of additional cells were confirmed by in vivo ablation experiments and layer-specific block of cell cycle progression. The number of cells generated by this glial progenitor and hence the control of perineurial hyperplasia correlate with the length of the abdominal nerves. By contrast, the wrapping and subperineurial glia layers show enormous hypertrophy in response to larval growth. This characterisation of the embryonic origin and development of each glial sheath will facilitate functional studies, as they can now be addressed distinctively and genetically manipulated in the embryo.
year | journal | country | edition | language |
---|---|---|---|---|
2013-09-01 |