6533b856fe1ef96bd12b2a02
RESEARCH PRODUCT
Multi-modality of polysomnography signals’ fusion for automatic sleep scoring
Rui YanChi ZhangKaren SpruytLai WeiZhiqiang WangLili TianXueqiao LiTapani RistaniemiJihui ZhangFengyu Congsubject
polysomnographysignaalinkäsittelyautomatic sleep scoringaivotutkimusuni (biologiset ilmiöt)multi-modality analysisdescription
Objective: The study aims to develop an automatic sleep scoring method by fusing different polysomnography (PSG) signals and further to investigate PSG signals’ contribution to the scoring result. Methods: Eight combinations of four modalities of PSG signals, namely electroencephalogram (EEG), electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) were considered to find the optimal fusion of PSG signals. A total of 232 features, covering statistical characters, frequency characters, time-frequency characters, fractal characters, entropy characters and nonlinear characters, were derived from these PSG signals. To select the optimal features for each signal fusion, four widely used feature selection methods were compared. At the classification stage, five different classifiers were employed to evaluate the validity of the features and to classify sleep stages. Results: For the database in the present study, the best classifier, random forest, realized the optimal consistency of 86.24% with the sleep macrostructures scored by the technologists trained at the Sleep Center. The optimal accuracy was achieved by fusing four modalities of PSG signals. Specifically, the top twelve features in the optimal feature set were respectively EEG features named zero-crossings, spectral edge, relative power spectral of theta, Petrosian fractal dimension, approximate entropy, permutation entropy and spectral entropy, and EOG features named spectral edge, approximate entropy, permutation entropy and spectral entropy, and the mutual information between EEG and submental EMG. In addition, ECG features (e.g. Petrosianfractaldimension, zero-crossings,meanvalue ofRamplitude andpermutation entropy) were useful for the discrimination among W, S1 and R. Conclusions: Through exploring the different fusions of multi-modality signals, the present study concluded that the multi-modality of PSG signals’ fusion contributed to higher accuracy, and the optimal feature set was a fusion of multiple types of features. Besides, compared with manual scoring, the proposed automatic scoringmethods were cost-effective, which would alleviate the burden ofthe physicians, speed up sleep scoring, and expedite sleep research. peerReviewed
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-01 |