6533b856fe1ef96bd12b30c8
RESEARCH PRODUCT
Formation and Growth of Pd Nanoparticles Inside a Highly Cross-Linked Polystyrene Support: Role of the Reducing Agent
Elisa BorfecchiaGiuseppe PortaleAlessandro LongoLiu WeiElena GroppoCarlo LambertiCarlo LambertiGiovanni AgostiniFrancesco Giannicisubject
Materials scienceExtended X-ray absorption fine structureReducing agentSmall-angle X-ray scatteringchemistry.chemical_elementNanoparticlePd nanoparticles; SAXS; EXAFSSAXSXANESSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistry.chemical_compoundEXAFSGeneral EnergyPd nanoparticleschemistryChemical engineeringPalladium nanoparticles time-resolved X-ray Absorption Spectroscopy Small Angle X-ray Spectroscopy Transmission Electron MicroscopyDiffuse reflectionPolystyrenePhysical and Theoretical ChemistryPalladiumdescription
Simultaneous time-resolved SAXS and XANES techniques were employed to follow in situ the formation of Pd nanoparticles in a porous polystyrene support, using palladium acetate as a precursor and gaseous H2 or CO as reducing agents. These results, in conjunction with data obtained by diffuse reflectance UV–vis and DRIFT spectroscopy and TEM measurements, allowed unraveling of the different roles played by gaseous H2 and CO in the formation of the Pd nanoparticles. In particular, it was found that the reducing agent affects (i) the reduction rate (which is faster in the presence of CO) and (ii) the properties of the hosted nanoparticles, in terms of size (bigger with CO), morphology (spherical with H2, triangular-like with CO), and surface properties (unclean with CO). The importance of a multitechnique approach in following the whole process of metal nanoparticles formation clearly emerges.
year | journal | country | edition | language |
---|---|---|---|---|
2014-04-10 |