6533b856fe1ef96bd12b31aa

RESEARCH PRODUCT

Characterizing varieties of colength ≤4

Daniela La Mattina

subject

Discrete mathematicsSequenceAlgebra and Number TheoryZero (complex analysis)Field (mathematics)Codimensions; Colengths; Polynomial identity; VarietyPolynomial identitySettore MAT/02 - AlgebraBounded functionCodimensionAssociative algebraVarietyColengthVariety (universal algebra)Finite setMathematics

description

Let A be an associative algebra over a field F of characteristic zero, and let χ n (A), n = 1,2,…, be the sequence of cocharacters of A. For every n ≥ 1, let l n (A) denote the nth colength of A, counting the number of S n -irreducibles appearing in χ n (A). In this article, we classify the algebras A such that the sequence of colengths l n (A), n = 1,2,…, is bounded by four. Moreover we construct a finite number of algebras A 1,…, A d , such that l n (A) ≤ 4 if and only if A 1,…, A d  ∉ var(A).

10.1080/00927870802216420http://hdl.handle.net/10447/42670