6533b856fe1ef96bd12b31fa

RESEARCH PRODUCT

Radon–Nikodým Theorems for Finitely Additive Multimeasures

Giovanni PorcelloLuisa Di Piazza

subject

Pure mathematicsHenstock–Kurzweil integralchemistrySettore MAT/05 - Analisi MatematicaApplied MathematicsMathematical analysischemistry.chemical_elementRadonMultifunction Henstock–Kurzweil integral Henstock–Kurzweil–Pettis integral selection Radon–Nikodým theoremAnalysisSelection (genetic algorithm)Mathematics

description

In this paper we deal with interval multimeasures. We show some Radon–Nikodým theorems for such multimeasures using multivalued Henstock or Henstock–Kurzweil–Pettis derivatives. We do not use the separability assumption in the results.

10.4171/zaa/1545http://hdl.handle.net/10447/148793