0000000000227968
AUTHOR
Giovanni Porcello
Multimeasures and integration of multifunctions in Banach spaces
Decomposability in the space ofHKP-integrable functions
In this paper we introduce the notion of decomposability in the space of Henstock-Kurzweil-Pettis integrable (for short HKP-integrable) functions. We show representations theorems for decomposable sets of HKP-integrable or Henstock integrable functions, in terms of the family of selections of suitable multifunctions.
Decomposability in the space of HKP-integrable functions
In this paper we introduce the notion of decomposability in the space of Henstock-Kurzweil-Pettis integrable (for short HKP-integrable) functions. We show representations theorems for decomposable sets of HKP-integrable or Henstock integrable functions, in terms of the family of selections of suitable multifunctions.
Radon–Nikodým Theorems for Finitely Additive Multimeasures
In this paper we deal with interval multimeasures. We show some Radon–Nikodým theorems for such multimeasures using multivalued Henstock or Henstock–Kurzweil–Pettis derivatives. We do not use the separability assumption in the results.