6533b856fe1ef96bd12b3245
RESEARCH PRODUCT
Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.)
Gianfranco PanfiliM. Di MatteoDonatella AlbaneseSerena NiroAlessandra FratianniLuciano CinquantaMaria Cristina Messiasubject
LuteinHot TemperatureFood HandlingPrunus armeniacaApricotKineticsColorThermal treatmentActivation energyXanthophylls01 natural scienceschemistry.chemical_compound0404 agricultural biotechnologyApricot; Carotenoids; Color; Drying; Furosine; Kinetics; Food ScienceFurosineDesiccationCarotenoidDryingchemistry.chemical_classificationCarotenoidKineticChromatographybiologyChemistryLysine010401 analytical chemistry04 agricultural and veterinary sciencesSettore AGR/15 - Scienze E Tecnologie Alimentaribiology.organism_classification040401 food sciencePrunus armeniacaCarotenoids0104 chemical sciencesKineticsBiochemistryModels ChemicalFruitDegradation (geology)Nutritive ValueViolaxanthinFood Sciencedescription
Abstract The kinetics of carotenoid and color degradation, as well as furosine formation, were investigated in apricot fruits during convective heating at 50, 60 and 70 °C. Degradation of carotenoids and color, expressed as total color difference (TCD), followed a first and zero order kinetic, respectively. The activation energy (Ea) for carotenoids degradation ranged from 73.7 kJ/mol for 13- cis -β-carotene to 120.7 kJ/mol for lutein, being about 91 kJ/mol for all- trans -β-carotene. Violaxanthin and anteraxanthin were the most susceptible to thermal treatment. The furosine evolution was fitted at zero order kinetic model. The Ea for furosine formation was found to be 83.3 kJ/mol and the Q 10 (temperature coefficient) varied from 1.59 to 4.14 at the temperature ranges 50–60 °C and 60–70 °C, respectively.
year | journal | country | edition | language |
---|---|---|---|---|
2017-01-01 |