6533b856fe1ef96bd12b3249
RESEARCH PRODUCT
Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation
Michã¨le Guilloux-benatierLaurent GalH. AlexandreJean GuzzoFabienne Remizesubject
Saccharomyces cerevisiae ProteinsNitrogenMalatesWineSaccharomyces cerevisiaeEthanol fermentationMicrobiology03 medical and health sciencesMalate DehydrogenaseProteinase APEP4EndopeptidasesGeneticsMalolactic fermentationLactic acid bacteriaNitrogen metabolismAmino AcidsMolecular Biology030304 developmental biologyOenococcus oenichemistry.chemical_classification0303 health sciencesbiology030306 microbiologyProteolytic enzymesfood and beveragesFree amino nitrogenbiology.organism_classificationYeastYeastAmino acidGram-Positive Cocci[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryBiochemistryFermentationPeptideFermentationdescription
International audience; Alcoholic fermentation of synthetic must was performed using either Saccharomyces cerevisiae or a mutant Delta pep4, which is deleted for the proteinase A gene. Fermentation with the mutant Delta pep4 resulted in 61% lower levels of free amino acids, and in 62% lower peptide concentrations at the end of alcoholic fermentation than in the control. Qualitative differences in amino acid composition were observed. Changes observed in amino acids in peptides were mainly quantitative. After alcoholic fermentation each medium was inoculated with Oenococcus oeni. Malolactic fermentation in the medium with the Delta pep4 strain took 10 days longer than the control. This difference may have been due to a difference in the nitrogen composition of the two media. Free amino acids and amino acids in peptides were poorly consumed by O. oeni. Thus, the qualitative aspects of nitrogen composition, which depend in part on yeast metabolism, may be a determinant for the optimal growth of O. oeni in wine.
year | journal | country | edition | language |
---|---|---|---|---|
2006-10-01 |