6533b856fe1ef96bd12b32fe

RESEARCH PRODUCT

Excited-state non-radiative decay in stilbenoid compounds: An: Ab initio quantum-chemistry study on size and substituent effects

Junqing ShiJunqing ShiJohannes GierschnerDaniel Roca-sanjuánSangyoon OhBegoña Milián-medinaBegoña Milián-medinaSoo Young ParkMaria A. Izquierdo

subject

Materials scienceAb initioGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesQuantum chemistryAGGREGATION-INDUCED EMISSIONYIELDSSTYRYLSTILBENEMoleculeFLUORESCENCEPhysical and Theoretical ChemistryPerturbation theoryBASIS-SETSISOMERIZATIONPHOTOCHEMISTRYConical intersectionCONICAL INTERSECTION021001 nanoscience & nanotechnologyPotential energy0104 chemical sciencesChemical physics2ND-ORDER PERTURBATION-THEORYExcited stateCIS-TRANS PHOTOISOMERIZATIONDensity functional theory0210 nano-technology

description

In the framework of optoelectronic luminescent materials, non-radiative decay mechanisms are relevant to interpret efficiency losses. These radiationless processes are herein studied theoretically for a series of stilbenoid derivatives, including distyrylbenzene (DSB) and cyano-substituted distyrylbenzene (DCS) molecules in vacuo. Given the difficulties of excited-state reaction path determinations, a simplified computational strategy is defined based on the exploration of the potential energy surfaces (PES) along the elongation, twisting, and pyramidalization of the vinyl bonds. For such exploration, density functional theory (DFT), time-dependent (TD)DFT, and complete-active-space self-consistent field/complete-active-space second-order perturbation theory (CASSCF/CASPT2) are combined. The strategy is firstly benchmarked for ethene, styrene, and stilbene; next it is applied to DSB and representative DCS molecules. Two energy descriptors are derived from the approximated PES, the Franck-Condon energy and the energy gap at the elongated, twisted, and pyramidalized structures. These energy descriptors correlate fairly well with the non-radiative decay rates, which validates our computational strategy. Ultimately, this strategy may be applied to predict the luminescence behavior in related compounds.

10.1039/c9cp03308dhttp://hdl.handle.net/20.500.12614/1870