6533b857fe1ef96bd12b39fe
RESEARCH PRODUCT
On the existence of at least a solution for functional integral equations via measure of noncompactness
Francesca VetroCalogero Vetrosubject
47H08Pure mathematicsBanach spaceAlgebra and Number Theory010102 general mathematicsMathematical analysisExtension (predicate logic)Space (mathematics)45N0501 natural sciencesMeasure (mathematics)Integral equation010101 applied mathematics54H25Settore MAT/05 - Analisi MatematicaBounded functionfunctional integral equationmeasure of noncompactnessSettore MAT/03 - Geometria0101 mathematicsAnalysisMathematicsdescription
In this article, we use fixed-point methods and measure of noncompactness theory to focus on the problem of establishing the existence of at least a solution for the following functional integral equation ¶ \[u(t)=g(t,u(t))+\int_{0}^{t}G(t,s,u(s))\,ds,\quad t\in{[0,+\infty[},\] in the space of all bounded and continuous real functions on $\mathbb{R}_{+}$ , under suitable assumptions on $g$ and $G$ . Also, we establish an extension of Darbo’s fixed-point theorem and discuss some consequences.
year | journal | country | edition | language |
---|---|---|---|---|
2017-07-01 | Banach Journal of Mathematical Analysis |