6533b857fe1ef96bd12b3b6f
RESEARCH PRODUCT
Fractional generalized cumulative entropy and its dynamic version
Antonio Di CrescenzoAlessandra MeoliSuchandan Kayalsubject
FOS: Computer and information sciencesExponential distributionComputer Science - Information TheoryMathematics - Statistics TheoryStatistics Theory (math.ST)01 natural sciencesMeasure (mathematics)010305 fluids & plasmas0103 physical sciencesFOS: MathematicsApplied mathematicsAlmost surelyCumulative entropy; Fractional calculus; Stochastic orderings; EstimationEntropy (energy dispersal)010306 general physicsStochastic orderingsMathematicsCentral limit theoremNumerical AnalysisInformation Theory (cs.IT)Applied MathematicsCumulative distribution functionProbability (math.PR)Fractional calculusEmpirical measureFractional calculusModeling and SimulationEstimationCumulative entropyMathematics - Probabilitydescription
Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fractional cumulative entropy as a non-parametric estimator of the new measure. It is shown that the empirical measure converges to the proposed notion almost surely. Then, we address the stability of the empirical measure and provide an example of application to real data. Finally, a central limit theorem is established under the exponential distribution.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 | Communications in Nonlinear Science and Numerical Simulation |