6533b857fe1ef96bd12b40d4

RESEARCH PRODUCT

Mammary odor cues and pheromones: mammalian infant-directed communication about maternal state, mammae, and milk

Benoist Schaal

subject

MESH: Olfactory PerceptionMESH: Animals Suckling[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition[ SCCO.PSYC ] Cognitive science/PsychologyMESH: Mammary Glands HumanMESH : PheromonesPheromonesmother milkWALLABY MACROPUS-EUGENIIMESH: SmellMESH : FemaleMESH: AnimalsMESH: PheromonesMESH: Milk Humannewborn rabbittransnatal olfactory continuityMESH: Mammary Glands AnimalMESH : InfantMESH : Feeding BehaviorMESH: Pheromones HumanMESH : AdultMESH : Milk HumanMESH : OdorsMESH: InfantMother-Child RelationsAnimals Sucklingnipple-attachment behaviorSmellMESH : Mother-Child RelationsBreast FeedingMilkMESH: Breast Feeding[SCCO.PSYC] Cognitive science/Psychology[SCCO.PSYC]Cognitive science/PsychologyMESH: Feeding BehaviorFemaleCuesMESH: Animal CommunicationAdultMESH: LactationMESH: Mother-Child RelationswallabyPheromones HumanRAT PUPSamniotic-fluidMESH : Mammary Glands AnimalMESH : Mammary Glands HumanNEWBORN RABBITSMESH : Animals SucklingMammary Glands AnimalMESH : Olfactory PerceptionAnimalsHumansLactationMammary Glands Humanprenatal flavor exposureMESH: OdorsMESH: HumansMESH : CuesMilk HumanMESH : LactationMESH : Humansbreast-milkInfantMESH: AdultFeeding Behaviormajor urinary proteinOlfactory PerceptionAnimal CommunicationMESH: Milk[SDV.AEN] Life Sciences [q-bio]/Food and NutritionMOTHERS MILKMESH : MilkMESH : Breast FeedingOdorantsrat pupMESH : SmellMESH : AnimalsMESH : Pheromones Humanmacropus-eugeniiMESH: Female[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Animal CommunicationMESH: Cues

description

International audience; Neonatal mammals are exposed to an outstandingly powerful selective pressure at birth, and any mean to alleviate their localization effort and accelerate acceptance to orally grasp a nipple and ingest milk should have had advantageous consequences over evolutionary time. Thus, it is essential for females to display a biological interface structure that is sensorily conspicuous and executively easy for their newborns. Females' strategy to increase the conspicuousness of nipples could only exploit the newborns' most advanced and conserved sensory systems, touch and olfaction, and selection has accordingly shaped tactilely and olfactorily conspicuous mammary structures. This evolutionary modification has worked either by affecting structural features of mammaries or indirectly by affecting maternal behavioral propensities to create olfactory traces on them. These predictions are considered here in mammalian cases that have received empirical attention among marsupials, rodents, lagomorphs, ungulates, carnivores, and primates. It appears that broadcasting chemical cues and/or signals from the mammae is a pan-mammalian reproductive strategy to pilot neonatal arousal, motivation and attraction to the mother, provide assistance in localizing and orally grasping the mammae, and boost up learning. But the ways by which these chemical cues are produced and assembled on the mammae are both diverse between species and complex within species, offering an outstanding opportunity for comparative analyses in chemical communication.

https://hal.archives-ouvertes.fr/hal-01123324