6533b857fe1ef96bd12b4459

RESEARCH PRODUCT

Effects of Added Resistance Training on Physical Fitness, Body Composition, and Serum Hormone Concentrations During Eight Weeks of Special Military Training Period

Jani P. VaaraJuha KokkoHeikki KyröläinenManne Isoranta

subject

Malemedicine.medical_specialtyAdolescentPhysical fitnessPhysical Therapy Sports Therapy and RehabilitationUpper ExtremityWeight-BearingYoung AdultAnimal sciencestrength trainingHumansMedicineTestosteroneOrthopedics and Sports MedicineMuscle Strengthta315FinlandAbdominal MusclesTraining periodbusiness.industryBack Musclesload carriageAdded resistanceResistance TrainingGeneral MedicineMilitary PersonnelLower ExtremityPhysical Fitnessmaximal strengthconcurrent trainingBody CompositionExercise TestPhysical EndurancePhysical therapybusinessPhysical Conditioning HumanHormone

description

A high volume of military training has been shown to compromise muscle strength development. We examined effects of added low-volume resistance training during special military training (ST) period, which took place after basic training period. Male conscripts (n = 25) were assigned to standardized ST with added resistance training group (TG, n = 13) and group with standardized ST only (control) (CG, n = 12). Standardized ST with added resistance training group performed 2 resistance training sessions per week for 8 weeks: hypertrophic strength (weeks 1-3), maximal strength (weeks 4-6) and power training (weeks 7-8). Maximal strength tests, load carriage performance (3.2 km, 27 kg), and hormone concentrations were measured before and after ST (mean ± SD). Both groups improved similarly in their load carriage performance time (TG: 1,162 ± 116 seconds vs. 1,047 ± 81 seconds; CG: 1,142 ± 95 seconds vs. 1,035 ± 81 seconds) (p0.001) but decreased maximal strength of the lower extremities (TG: 5,250 ± 1,110 N vs. 4,290 ± 720 N; CG: 5,170 ± 1,050 N vs. 4,330 ± 1,230 N) and back muscles (TG: 4,290 ± 990 N vs. 3,570 ± 48 N; CG: 3,920 ± 72 N vs. 3,410 ± 53 N) (p ≤ 0.05). Maximal strength of the upper extremities improved in CG (1,040 ± 200 N vs. 1,140 ± 200 N) (p ≤ 0.05) but not in TG. Maximal strength of the abdominal muscles improved in TG (3,260 ± 510 N vs. 3,740 ± 75 N) (p ≤ 0.05) but not in CG. Testosterone concentration increased in CG (15.2 ± 3.6 nmol·L⁻¹ vs. 21.6 ± 5.0 nmol·L⁻¹) (p0.01) but not in TG (18.6 ± 4.3 nmol·L⁻¹ vs. 19.5 ± 9.4 nmol·L⁻¹). In conclusion, interference with strength gains might be related to the high volume of aerobic activities and too low volume of resistance training during ST. To develop strength characteristics, careful periodization and individualization should be adopted in ST.

https://doi.org/10.1519/jsc.0000000000001034