6533b857fe1ef96bd12b4462
RESEARCH PRODUCT
Quantum Walk Search through Potential Barriers
Thomas G. Wongsubject
Statistics and ProbabilityQuantum PhysicsComputer sciencePhysical systemGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear Physics01 natural sciencesPotential energy010305 fluids & plasmasVertex (geometry)AmplitudeModeling and Simulation0103 physical sciencesQuantum walkStatistical physics010306 general physicsError detection and correctionQuantum Physics (quant-ph)QuantumMathematical PhysicsQuantum tunnellingdescription
An ideal quantum walk transitions from one vertex to another with perfect fidelity, but in physical systems, the particle may be hindered by potential energy barriers. Then the particle has some amplitude of tunneling through the barriers, and some amplitude of staying put. We investigate the algorithmic consequence of such barriers for the quantum walk formulation of Grover's algorithm. We prove that the failure amplitude must scale as $O(1/\sqrt{N})$ for search to retain its quantum $O(\sqrt{N})$ runtime; otherwise, it searches in classical $O(N)$ time. Thus searching larger "databases" requires increasingly reliable hop operations or error correction. This condition holds for both discrete- and continuous-time quantum walks.
year | journal | country | edition | language |
---|---|---|---|---|
2015-03-23 |