6533b857fe1ef96bd12b4468
RESEARCH PRODUCT
Expert Q-learning: Deep Reinforcement Learning with Coarse State Values from Offline Expert Examples
Li MengAnis YazidiMorten GoodwinPaal Engelstadsubject
FOS: Computer and information sciencesImitation LearningComputer Science - Machine LearningArtificial Intelligence (cs.AI)Deep LearningComputer Science - Artificial IntelligenceSemi-supervised LearningGeneral MedicineVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Reinforcement LearningMachine Learning (cs.LG)description
In this article, we propose a novel algorithm for deep reinforcement learning named Expert Q-learning. Expert Q-learning is inspired by Dueling Q-learning and aims at incorporating semi-supervised learning into reinforcement learning through splitting Q-values into state values and action advantages. We require that an offline expert assesses the value of a state in a coarse manner using three discrete values. An expert network is designed in addition to the Q-network, which updates each time following the regular offline minibatch update whenever the expert example buffer is not empty. Using the board game Othello, we compare our algorithm with the baseline Q-learning algorithm, which is a combination of Double Q-learning and Dueling Q-learning. Our results show that Expert Q-learning is indeed useful and more resistant to the overestimation bias. The baseline Q-learning algorithm exhibits unstable and suboptimal behavior in non-deterministic settings, whereas Expert Q-learning demonstrates more robust performance with higher scores, illustrating that our algorithm is indeed suitable to integrate state values from expert examples into Q-learning.
year | journal | country | edition | language |
---|---|---|---|---|
2022-03-28 |