6533b857fe1ef96bd12b4f42

RESEARCH PRODUCT

First Report of Phytophthora spp. as Pathogens of Pandorea jasminoides in Italy

Santa Olga CacciolaA. ChimentoAntonella PaneG. Magnano Di San LioC. AllattaS. Scibetta

subject

Pandorea jasminoidesfood.ingredientChlorosisbiologySporangiumPlant SciencePhytophthora nicotianaebiology.organism_classificationHorticulturefoodBotanyRoot rotAgarPotato dextrose agarPhytophthoraAgronomy and Crop Science

description

In the summer of 2005, approximately 5% of a nursery stock of 12-month-old potted plants of bower vine (Pandorea jasminoides (Lindl.) K. Schum.) in Sicily (Italy) showed wilt, leaf chlorosis, defoliation, root rot, and collapse of the entire plant. Three Phytophthora spp. (20, 50, and 30% of the isolations of the first, second, and third species, respectively) were isolated from rotted roots on BNPRAH selective medium (2). Single-hypha isolates of the first species formed petaloid colonies on potato dextrose agar (PDA) and had an optimum growth temperature of 25°C (9.3 mm/day); on V8 juice agar, they produced uni- and bipapillate, ovoid to limoniform sporangia with mean dimensions of 45 × 30 μm and a mean length/width (l/w) ratio of 1.4:1. They did not produce gametangia when paired with A1 and A2 isolates of Phytophthora nicotianae. The second species formed arachnoides colonies on PDA, had an optimum growth temperature of 30°C (6.9 mm/day) and produced sporangia that were uni- and bipapillate, ellipsoid, ovoid, or pyriform to spherical (dimensions 44 × 34 μm; l/w ratio 1.3:1). All isolates were A2 mating type and produced amphyginous antheridia and spherical oogonia with smooth walls. The third species formed rosaceous colonies on PDA, had an optimum growth temperature of 28 to 30°C (11.9 mm/day), and produced uni- and bipapillate, ellipsoid or limoniform, caducous sporangia (dimensions 52 × 26 μm; l/w ratio 2.1:1) with a tapered base and a long pedicel (as much as 150 μm). All isolates were A1 type and produced amphigynous antheridia and spherical oogonia with smooth walls. The three species were identified as P. citrophthora, P. nicotianae, and P. tropicalis, respectively. The electrophoretic analysis of the mycelial proteins and four isozymes (1) confirmed the identification. Blast analysis of the sequence of the internal transcribed spacer region of the rDNA of a P. tropicalis isolate from bower vine (GenBank Accession No. EU076731) showed 99% similarity with the sequence of a P. tropicalis isolate from Cuphea ignea (GenBank Accession No. DQ118649). The pathogenicity of three isolates from bower vine, IMI 395552 (P. citrophthora), IMI 395553 (P. nicotianae), and IMI 395346 (P. tropicalis), was tested on 3-month-old potted bower vine plants (10 plants for each isolate) by applying 10 ml of a suspension (2 × 104 zoospores/ml) to the root crown. The plants were maintained at 24°C and 95 to 100% relative humidity. All inoculated plants wilted after 4 weeks. Noninoculated control plants remained healthy. The three Phytophthora spp. were reisolated from symptomatic plants. To our knowledge, this is the first report of Phytophthora root rot of bower vine in Italy. References: (1) S. O. Cacciola et al. Plant Dis. 90:680, 2006. (2) D. C. Erwin and O. K. Ribeiro. Phytophthora Diseases Worldwide. The American Phytopathological Society, St. Paul, MN, 1996.

https://doi.org/10.1094/pdis-92-2-0313b