6533b857fe1ef96bd12b4f69

RESEARCH PRODUCT

Biological investigation of neural circuits in the insect brain

Luca PatanéRoland StraussPaolo Arena

subject

0301 basic medicineCognitive sciencebiologyWorking memoryComputer sciencefungiForagingEnergy Engineering and Power Technologybiology.organism_classification03 medical and health sciences030104 developmental biology0302 clinical medicineEngineering (all)Orientation (mental)Mushroom bodiesBiological neural networkRobotMathematics (all)Biotechnology; Chemical Engineering (all); Mathematics (all); Materials Science (all); Energy Engineering and Power Technology; Engineering (all)Chemical Engineering (all)Materials Science (all)Drosophila melanogasterDrosophila030217 neurology & neurosurgeryBiotechnology

description

Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabilities. This provided novel insight into the wiring and the working of central brain structures like the mushroom bodies and the central complex. Plasticity of the nervous system underlies adaptive behaviour. Drosophila flies show various memories from a 4-s working memory for orientation to a life-long body-size memory. Here we will discuss some of the functions and brain structures underlying fitness and role-model function of insects for autonomously roving robots.

10.1007/978-3-319-73347-0_1http://hdl.handle.net/11570/3150941