6533b857fe1ef96bd12b50c1

RESEARCH PRODUCT

Molecular Signatures Associated with Treatment of Triple-Negative MDA-MB231 Breast Cancer Cells with Histone Deacetylase Inhibitors JAHA and SAHA

John SpencerMariangela LibrizziJanusz DebskiClaudio LuparelloFabio CaradonnaSupojjanee SansookIlenia CruciataMichal Dadlez

subject

0301 basic medicinemedicine.drug_classAntineoplastic AgentsTriple Negative Breast NeoplasmsBiologyHydroxamic AcidsToxicologyStructure-Activity Relationship03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansCytotoxic T cellFerrous CompoundsSettore BIO/06 - Anatomia Comparata E Citologiaskin and connective tissue diseasesVorinostatTriple-negative breast cancerVorinostatDose-Response Relationship DrugHistone deacetylase inhibitorComputational BiologyGeneral MedicineTriple Negative Breast NeoplasmsCell cycleHistone Deacetylase InhibitorsSettore BIO/18 - Genetica030104 developmental biologyBiochemistryCell culture030220 oncology & carcinogenesisCancer researchHistone deacetylaseJAHA Comet assay MDA-MB231 Histone Deacetylase InhibitorsDrug Screening Assays Antitumormedicine.drug

description

Jay Amin Hydroxamic Acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA’s cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 M. JAHA’s lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction and autophagy mechanisms. In order to glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination of differential display-PCR, proteome analysis and COMET assay techniques and shown some differences in the molecular signature profiles induced by exposure to either HDACis. In particular, in contrast to the more numerous and diversified changes induced by SAHA, JAHA has shown a more selective impact on expression of molecular signatures involved in anti-oxidant activity and DNA repair. Besides expanding the biological knowledge of the effect exerted by the modifications in compound structures on cell phenotype, the molecular elements put in evidence in our study may provide promising targets for therapeutic interventions on TNBCs.

10.1021/acs.chemrestox.7b00269https://hdl.handle.net/10447/250516