0000000000332041

AUTHOR

John Spencer

showing 13 related works from this author

The FASER Detector

2022

FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$\nu$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system …

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and Detectorshep-exFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Detectors and Experimental Techniquesphysics.ins-detParticle Physics - ExperimentHigh Energy Physics - Experiment
researchProduct

Cytotoxic effects of Jay Amin hydroxamic acid (JAHA), a ferrocene-based class I histone deacetylase inhibitor, on triple-negative MDA-MB231 breast ca…

2012

The histone deacetylase inhibitors (HDACis) are a class of chemically heterogeneous anticancer agents of which suberoylanilide hydroxamic acid (SAHA) is a prototypical member. SAHA derivatives may be obtained by three-dimensional manipulation of SAHA aryl cap, such as the incorporation of a ferrocene unit like that present in Jay Amin hydroxamic acid (JAHA) and homo-JAHA [ Spencer , et al. ( 2011 ) ACS Med. Chem. Lett. 2 , 358 - 362 ]. These metal-based SAHA analogues have been tested for their cytotoxic activity toward triple-negative MDA-MB231 breast cancer cells. The results obtained indicate that of the two compounds tested, only JAHA was prominently active on breast cancer cells with a…

medicine.drug_classCell SurvivalMetallocenesAntineoplastic AgentsApoptosisToxicologyHydroxamic AcidsStructure-Activity RelationshipIn vivoAnnexinmedicineTumor Cells CulturedCytotoxic T cellHumansFerrous CompoundsSettore BIO/06 - Anatomia Comparata E Citologiachemistry.chemical_classificationMembrane Potential MitochondrialReactive oxygen speciesDose-Response Relationship DrugMolecular StructureChemistryHistone deacetylase inhibitorCell CycleGeneral MedicineIn vitroHistone Deacetylase InhibitorsBiochemistryhistone deacetylase inhibitor breast cancer autophagy apoptosis mitochondria cell cycleApoptosisCancer researchHistone deacetylaseDrug Screening Assays AntitumorReactive Oxygen Species
researchProduct

The Histone Deacetylase Inhibitor JAHA Down-Regulates pERK and Global DNA Methylation in MDA-MB231 Breast Cancer Cells

2015

The histone deacetylase inhibitor N-1-(ferrocenyl)-N-8-hydroxyoctanediamide (JAHA) down-regulates extracellular-signal-regulated kinase (ERK) and its activated form in triple-negative MDA-MB231 breast cancer cells after 18 h and up to 30 h of treatment, and to a lesser extent AKT and phospho-AKT after 30 h and up to 48 h of treatment. Also, DNA methyltransferase 1 (DNMT1), 3b and, to a lesser extent, 3a, downstream ERK targets, were down-regulated already at 18 h with an increase up to 48 h of exposure. Methylation-sensitive restriction arbitrarily-primed (MeSAP) polymerase chain reaction (PCR) analysis confirmed the ability of JAHA to induce genome-wide DNA hypomethylation at 48 h of expos…

DNA methyltransferase (DNMT)medicine.drug_classDNA methyltransferaselcsh:TechnologymedicineGeneral Materials ScienceCancer epigeneticsSettore BIO/06 - Anatomia Comparata E Citologialcsh:Microscopyhistone deacetylase inhibitorlcsh:QC120-168.85QD0415Histone deacetylase 5lcsh:QH201-278.5extracellular-signal-regulated kinase (ERK)ChemistryHistone deacetylase 2lcsh:TCommunicationAKTHistone deacetylase inhibitorMolecular biologySettore BIO/18 - Geneticalcsh:TA1-2040DNA methylationDNMT1lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971DNA hypomethylationQD0241
researchProduct

Studying neutrinos at the LHC: FASER and its impact to the cosmic-ray physics

2021

Studies of high energy proton interactions have been basic inputs to understand the cosmic-ray spectra observed on the earth. Yet, the experimental knowledge with controlled beams has been limited. In fact, uncertainties of the forward hadron production are very large due to the lack of experimental data. The FASER experiment is proposed to measure particles, such as neutrinos and hypothetical dark-sector particles, at the forward location of the 14 TeV proton-proton collisions at the LHC. As it corresponds to 100-PeV proton interactions in fixed target mode, a precise measurement by FASER would provide information relevant for PeV-scale cosmic rays. By studying three flavor neutrinos with …

PhysicsAstrophysics and AstronomyParticle physicsLarge Hadron ColliderPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentCosmic rayNeutrinoProceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)
researchProduct

Jay Amin Hydroxamic Acid (JAHA), a histone deacetylase inhibitor with cytotoxic activity and the property to increase DNA repair of triple-negative M…

2017

Jay Amin Hydroxamic Acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA’s cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 M. JAHA’s lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction and autophagy mechanisms. In order to glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination o…

Settore BIO/18 - GeneticaJAHA SAHA comet assay DNA methylationSettore BIO/06 - Anatomia Comparata E Citologia
researchProduct

Synthesis of hybrid anticancer agents based on kinase and histone deacetylase inhibitors

2014

Fragments based on the VEGFR2i Semaxanib (SU5416, (vascular endothelial growth factor receptor-2\ud inhibitor) and the HDACi (histone deacetylase inhibitor) SAHA (suberanilohydroxamic acid) have been\ud merged to form a range of low molecular weight dual action hybrids. Vindication of this approach is\ud provided by SAR, docking studies, in vitro cancer cell line and biochemical enzyme inhibition data as well\ud as in vivo Xenopus data for the lead molecule (Z)-N1-(3-((1H-pyrrol-2-yl)methylene)-2-oxoindolin-5-yl)-\ud N8-hydroxyoctanediamide 6.

PharmacologyHistone deacetylase 5medicine.drug_classKinaseHistone deacetylase 2Organic ChemistryHistone deacetylase inhibitorQPharmaceutical ScienceBiologyBiochemistryHDACiVEGFRiHybrids.BiochemistryDocking (molecular)In vivoDrug DiscoverymedicineMolecular MedicineHistone deacetylaseSettore BIO/06 - Anatomia Comparata E CitologiaSemaxanibmedicine.drug
researchProduct

Cytotoxic activity of the histone deacetylase 3-Selective inhibitor Pojamide on MDA-MB-231 triple-negative breast cancer cells

2019

We examined the effects of the ferrocene-based histone deacetylase-3 inhibitor Pojamide (N1-(2-aminophenyl)-N8-ferrocenyloctanediamide) and its two derivatives N1-(2-aminophenyl)-N6-ferrocenyladipamide and N1-(2-aminophenyl)-N8-ferroceniumoctanediamide tetrafluoroborate on triple-negative MDA-MB-231 breast cancer cells. Viability/growth assays indicated that only the first two compounds at 70 &mu

0301 basic medicineQD0901Triple Negative Breast Neoplasmslcsh:Chemistry0302 clinical medicinebreast cancer cellmitochondrial transmembrane potentialCytotoxic T cellQDSettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5SpectroscopyTriple-negative breast cancerreactive oxygen speciesCell DeathChemistryHistone deacetylase inhibitorQapoptosisGeneral MedicineCell cycle3. Good healthComputer Science Applications030220 oncology & carcinogenesisFemalecell cycleProgrammed cell deathautophagymedicine.drug_classCell SurvivalCatalysisArticleHistone DeacetylasesInorganic Chemistry03 medical and health sciencesCell Line TumormedicineBiomarkers TumorHumansViability assayPhysical and Theoretical ChemistryMolecular Biologyhistone deacetylase inhibitorcell viabilityOrganic ChemistryAutophagyapoptosiMatrix MetalloproteinasesHistone Deacetylase InhibitorsSettore BIO/18 - Genetica030104 developmental biologylcsh:Biology (General)lcsh:QD1-999ApoptosisCancer researchQD0146breast cancer cells
researchProduct

Cytotoxicity of the Urokinase-Plasminogen Activator Inhibitor Carbamimidothioic Acid (4-Boronophenyl) Methyl Ester Hydrobromide (BC-11) on Triple-Neg…

2015

BC-11 is an easily synthesized simple thiouronium-substituted phenylboronic acid, which has been shown to be cytotoxic on triple negative MDA-MB231 breast cancer cells by inducing a perturbation of cell cycle when administered at a concentration equal to its ED50 at 72 h (117 μM). Exposure of cells to BC-11, either pre-absorbed with a soluble preparation of the N-terminal fragment of urokinase-plasminogen activator (uPa), or in co-treatment with two different EGFR inhibitors, indicated that: (i) BC-11 acts via binding to the N-terminus of the enzyme where uPa- and EGF receptor-recognizing sites are present, thereby abrogating the growth-sustaining effect resulting from receptor binding

boronic acidPharmaceutical ScienceGene ExpressionApoptosisAnalytical ChemistryDrug DiscoveryCytotoxic T cellSettore BIO/06 - Anatomia Comparata E CitologiaCytotoxicityEGFR inhibitorschemistry.chemical_classificationCell CycleDrug SynergismCell cycleBoronic AcidsMitochondriaErbB ReceptorsBiochemistryChemistry (miscellaneous)Molecular MedicinecytotoxicityFemaleQD0241Antineoplastic AgentsArticlelcsh:QD241-441plasminogen activator inhibitorbreast cancerlcsh:Organic chemistryCell Line TumorHumansPhysical and Theoretical ChemistryMammary Glands HumanCell ProliferationQD0415Reactive oxygen speciesHydrobromideOrganic ChemistryEpithelial CellsBC-11Molecular biologyUrokinase-Type Plasminogen ActivatorPlasminogen InactivatorsEnzymechemistryApoptosisQuinazolinesMDA-MB231 cellsReactive Oxygen Speciesboronic acid; BC-11; plasminogen activator inhibitor; breast cancer; cytotoxicity; MDA-MB231 cellsMolecules
researchProduct

Genotoxicity and Epigenotoxicity of Carbazole-Derived Molecules on MCF-7 Breast Cancer Cells

2021

The carbazole compounds PK9320 (1-(9-ethyl-7-(furan-2-yl)-9H-carbazol-3-yl)-N-methylmethanamine) and PK9323 (1-(9-ethyl-7-(thiazol-4-yl)-9H-carbazol-3-yl)-N-methylmethanamine), second-generation analogues of PK083 (1-(9-ethyl-9H-carbazol-3-yl)-N-methylmethanamine), restore p53 signaling in Y220C p53-mutated cancer cells by binding to a mutation-induced surface crevice and acting as molecular chaperones. In the present paper, these three molecules have been tested for mutant p53-independent genotoxic and epigenomic effects on wild-type p53 MCF-7 breast adenocarcinoma cells, employing a combination of Western blot for phospho-γH2AX histone, Comet assay and methylation-sensitive arbitrarily pr…

0301 basic medicinemedicine.disease_causeEpigenesis GeneticHistoneslcsh:Chemistry0302 clinical medicineSettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5SpectroscopyEpigenomicsDNA methylationbiologyChemistryGeneral Medicine3. Good healthComputer Science Applicationscarbazole derivativeHistone030220 oncology & carcinogenesisDNA methylationMCF-7 CellsFemaleepigeneticSignal TransductionCarbazolesAntineoplastic AgentsBreast NeoplasmsArticleCatalysisInorganic Chemistry03 medical and health sciencesbreast cancermedicineHumansEpigeneticsPhysical and Theoretical ChemistryMolecular BiologyepigeneticsOrganic Chemistrygenomic instabilityComet assaySettore BIO/18 - Genetica030104 developmental biologylcsh:Biology (General)lcsh:QD1-999MCF-7carbazole derivativesCancer cellbiology.proteinCancer researchTumor Suppressor Protein p53GenotoxicityDNA DamageMutagensInternational Journal of Molecular Sciences
researchProduct

Molecular Signatures Associated with Treatment of Triple-Negative MDA-MB231 Breast Cancer Cells with Histone Deacetylase Inhibitors JAHA and SAHA

2017

Jay Amin Hydroxamic Acid (JAHA; N8-ferrocenylN1-hydroxy-octanediamide) is a ferrocene-containing analogue of the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA). JAHA’s cytotoxic activity on MDA-MB231 triple negative breast cancer (TNBC) cells at 72 h has been previously demonstrated with an IC50 of 8.45 M. JAHA’s lethal effect was found linked to perturbations of cell cycle, mitochondrial activity, signal transduction and autophagy mechanisms. In order to glean novel insights on how MDA-MB231 breast cancer cells respond to the cytotoxic effect induced by JAHA, and to compare the biological effect with the related compound SAHA, we have employed a combination of…

0301 basic medicinemedicine.drug_classAntineoplastic AgentsTriple Negative Breast NeoplasmsBiologyHydroxamic AcidsToxicologyStructure-Activity Relationship03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansCytotoxic T cellFerrous CompoundsSettore BIO/06 - Anatomia Comparata E Citologiaskin and connective tissue diseasesVorinostatTriple-negative breast cancerVorinostatDose-Response Relationship DrugHistone deacetylase inhibitorComputational BiologyGeneral MedicineTriple Negative Breast NeoplasmsCell cycleHistone Deacetylase InhibitorsSettore BIO/18 - Genetica030104 developmental biologyBiochemistryCell culture030220 oncology & carcinogenesisCancer researchHistone deacetylaseJAHA Comet assay MDA-MB231 Histone Deacetylase InhibitorsDrug Screening Assays Antitumormedicine.drug
researchProduct

Biological Effect of a Hybrid Anticancer Agent Based on Kinase and Histone Deacetylase Inhibitors on Triple-Negative (MDA-MB231) Breast Cancer Cells

2016

We examined the effects of the histone deacetylase inhibitor (HDACi) suberoylanilide\ud hydroxamic acid (SAHA) combined with the vascular endothelial growth factor receptor-1/2 inhibitor\ud (3Z)-5-hydroxy-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-2-one on MDA-MB-231 breast\ud cancer cells (triple-negative) in the form of both a cocktail of the separate compounds and a chemically\ud synthesized hybrid (N-hydroxy-N'-[(3Z)-2-oxo-3-(1H-pyrrol-2-ylmethylidene)-2,3-dihydro-1H-indol-\ud 5-yl]octanediamide). Comparative flow cytometric and Western blot analyses were performed on\ud cocktail- and hybrid-treated cells to evaluate cell cycle distribution, autophagy/apoptosis modulation,\ud an…

0301 basic medicineVascular Endothelial Growth Factor AIndolesCytotoxicityTriple Negative Breast Neoplasmsbreast cancer; MDA-MB231 cells; histone deacetylase inhibitor; vascular endothelial growth factor receptor-2 inhibitor; cytotoxicity; cell cycle; apoptosis; autophagy; mitochondrial metabolismHydroxamic AcidsCatalysi0302 clinical medicineBreast cancerTumor Cells CulturedCytotoxic T cellSettore BIO/06 - Anatomia Comparata E CitologiaSpectroscopyVorinostatVascular endothelial growth factor receptor-2 inhibitorApoptosis; Autophagy; Breast cancer; Cell cycle; Cytotoxicity; Histone deacetylase inhibitor; MDA-MB231 cells; Mitochondrial metabolism; Vascular endothelial growth factor receptor-2 inhibitor; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryKinaseHistone deacetylase inhibitorapoptosisComputer Science Applications1707 Computer Vision and Pattern RecognitionGeneral MedicineCell cycleFlow CytometryComputer Science ApplicationsCell biologyMDA-MB231 cell030220 oncology & carcinogenesisFemaleQD0241Programmed cell deathmedicine.drug_classCell SurvivalBlotting WesternAntineoplastic AgentsBiologyCell cycleCatalysisArticleInorganic Chemistry03 medical and health sciencesmedicineAutophagyHumansPhysical and Theoretical ChemistryProtein Kinase InhibitorsMolecular BiologyQD0415Histone deacetylase inhibitorAutophagyOrganic ChemistryApoptosiHistone Deacetylase Inhibitors030104 developmental biologyApoptosisMitochondrial metabolismMDA-MB231 cellsHistone deacetylaseInternational Journal of Molecular Sciences; Volume 17; Issue 8; Pages: 1235
researchProduct

Targeting Cavity-Creating p53 Cancer Mutations with Small-Molecule Stabilizers: the Y220X Paradigm

2020

We have previously shown that the thermolabile, cavity-creating p53 cancer mutant Y220C can be reactivated by small-molecule stabilizers. In our ongoing efforts to unearth druggable variants of the p53 mutome, we have now analyzed the effects of other cancer-associated mutations at codon 220 on the structure, stability, and dynamics of the p53 DNA-binding domain (DBD). We found that the oncogenic Y220H, Y220N, and Y220S mutations are also highly destabilizing, suggesting that they are largely unfolded under physiological conditions. A high-resolution crystal structure of the Y220S mutant DBD revealed a mutation-induced surface crevice similar to that of Y220C, whereas the corresponding pock…

Models Molecular0301 basic medicineMutantCarbazolesDruggabilityCancer therapyAntineoplastic Agents01 natural sciencesBiochemistryDNA-binding proteinStructure-Activity Relationship03 medical and health sciencesProtein DomainsHumansCancer mutationsThermolabileQD0415Protein Stability010405 organic chemistryChemistryArticlesGeneral MedicineSmall moleculeAffinities0104 chemical sciences030104 developmental biologyGene Expression RegulationMutationBiophysicsMolecular MedicineMutant ProteinsDrug Screening Assays AntitumorTumor Suppressor Protein p53CrystallizationProtein BindingQD0241ACS Chemical Biology
researchProduct

The FASER Detector

2022

FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$ν$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system an…

High Energy Physics - Experiment (hep-ex)FOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)
researchProduct