6533b858fe1ef96bd12b56d3

RESEARCH PRODUCT

Biophysical parameter estimation with adaptive Gaussian Processes

Jordi Muñoz-maríJulia AmorosG. Camps-vailsJavier Calpe-maravillaS. Del Valle-tasconJoan Vila-francésLuis Gómez-chova

subject

Hyperparameterbusiness.industryEstimation theoryNoise (signal processing)Pattern recognitionVariance (accounting)Marginal likelihoodsymbols.namesakeKernel methodKernel (statistics)symbolsArtificial intelligencebusinessGaussian processAlgorithmMathematics

description

We evaluate Gaussian Processes (GPs) for the estimation of biophysical parameters from acquired multispectral data. The standard GP formulation is used, and all hyperparameters (kernel parameters and noise variance) are optimized by maximizing the marginal likelihood. This gives rise to a fully-adaptive GP to data characteristics, both in terms of signal and noise properties. The good numerical results in the estimation of oceanic chlorophyll concentration and leaf membrane state confirm GPs as adequate, alternative non-parametric methods for biophysical parameter estimation. GPs are also analyzed by scrutinizing the predictive variance, the estimated noise variance, and the relevance of each feature after optimization.

https://doi.org/10.1109/igarss.2009.5417372