6533b858fe1ef96bd12b5840

RESEARCH PRODUCT

On one-dimensionality of metric measure spaces

Timo Schultz

subject

metric measure spacesMathematics - Differential GeometryApplied MathematicsGeneral MathematicsOpen setBoundary (topology)Metric Geometry (math.MG)Space (mathematics)53C23Measure (mathematics)metriset avaruudetManifoldCombinatoricsdifferentiaaligeometriaRicci curvatureDifferential Geometry (math.DG)optimal transportMathematics - Metric GeometryMetric (mathematics)FOS: MathematicsmittateoriaGromov--Hausdorff tangentsReal lineRicci curvatureMathematics

description

In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to an arbitrary measure, is a one-dimensional manifold (possibly with boundary). As an immediate corollary we obtain that if a metric measure space is a very strict $CD(K,N)$ -space or an essentially non-branching $MCP(K,N)$-space with some open set isometric to an interval, then it is a one-dimensional manifold. We also obtain the same conclusion for a metric measure space which has a point in which the Gromov-Hausdorff tangent is unique and isometric to the real line, and for which the optimal transport maps not only exist but are unique. Again, we obtain an analogous corollary in the setting of essentially non-branching $MCP(K,N)$-spaces.

http://arxiv.org/abs/1912.01579