6533b858fe1ef96bd12b597c
RESEARCH PRODUCT
cDNA Cloning and Functional Expression of Jerdostatin, a Novel RTS-disintegrin from Trimeresurus jerdonii and a Specific Antagonist of the α1β1 Integrin
Run-qiang ChenPaula JuárezBernardo CeldaCezary MarcinkiewiczLibia SanzDaniel MonleonRebeca HilarioYu-liang XiongEnrique Pérez-payáAlicia PérezJuan J. Calvetesubject
Models MolecularSignal peptideProtein FoldingDNA ComplementaryMagnetic Resonance SpectroscopyProtein ConformationDisintegrinsMolecular Sequence DataIntegrinMutantGene ExpressionPeptide MappingBiochemistryIntegrin alpha1beta1Open Reading FramesExocrine GlandsComplementary DNACrotalid VenomsDisintegrinAnimalsTrimeresurusTrypsinAmino Acid SequenceCysteineDisulfidesCloning MolecularMolecular BiologyPeptide sequenceMessenger RNABase SequencebiologyCell BiologyMolecular biologyRecombinant ProteinsOpen reading frameMutagenesis Site-Directedbiology.proteindescription
Jerdostatin represents a novel RTS-containing short disintegrin cloned by reverse transcriptase-PCR from the venom gland mRNA of the Chinese Jerdons pit viper Trimeresurus jerdonii. The jerdostatins precursor cDNA contained a 333-bp open reading frame encoding a signal peptide, a pre-peptide, and a 43-amino acid disintegrin domain, whose amino acid sequence displayed 80% identity with that of the KTS-disintegrins obtustatin and viperistatin. The jerdostatin cDNA structure represents the first complete open reading frame of a short disintegrin and points to the emergence of jerdostatin from a short-coding gene. The different residues between jerdostatin and obtustatin/viperistatin are segregated within the integrin-recognition loop and the C-terminal tail. Native jerdostatin (r-jerdostatin-R21) and a R21K mutant (r-jerdostatin-K21) were produced in Escherichia coli. In each case, two conformers were isolated. One-dimensional (1)H NMR showed that conformers 1 and 2 of r-jerdostatin-R21 represent, respectively, well folded and unfolded proteins. The two conformers of the wild-type and the R21K mutant inhibited the adhesion of alpha(1)-K562 cells to collagen IV with IC(50) values of 180 and 703 nm, respectively. The IC(50) values of conformers 2 of r-jerdostatin-R21 and r-jerdostatin-K21 were, respectively, 5.95 and 12.5 microm. Neither r-jerdostatin-R21 nor r-jerdostatin-K21 showed inhibitory activity toward other integrins, including alpha(IIb)beta(3), alpha(v)beta(3), alpha(2)beta(1), alpha(5)beta(1), alpha(4)beta(1), alpha(6)beta(1), and alpha(9)beta(1) up to a concentration of 24 mum. Although the RTS motif appears to be more potent than KTS inhibiting the alpha(1)beta(1) integrin, r-jerdostatin-R21 is less active than the KTS-disintegrins, strongly suggesting that substitutions outside the integrin-binding motif and/or C-terminal proteolytic processing are responsible for the decreased inhibitory activity.
year | journal | country | edition | language |
---|---|---|---|---|
2005-12-01 | Journal of Biological Chemistry |