0000000000471584

AUTHOR

Paula Juárez

showing 4 related works from this author

Snake venom disintegrins: evolution of structure and function.

2005

Disintegrins represent a family of polypeptides present in the venoms of various vipers that selectively block the function of integrin receptors. Here, we review our current view and hypothesis on the emergence and the structural and functional diversification of disintegrins by accelerated evolution and the selective loss of disulfide bonds of duplicated genes. Research on disintegrins is relevant for understanding the biology of viper venom toxins, but also provides information on new structural determinants involved in integrin recognition that may be useful in basic and clinical research. The role of the composition, conformation, and dynamics of the integrin inhibitory loop acting in …

Models MolecularIntegrinsStereochemistryDisintegrinsIntegrinAmino Acid MotifsMolecular Sequence DataSequence alignmentVenomToxicologyViper VenomsEvolution MolecularStructure-Activity RelationshipProtein structureGenes DuplicateAnimalsAmino Acid SequencePeptide sequencePhylogenybiologyBase SequenceSnakesCell biologyProtein Structure TertiarySnake venombiology.proteinSequence AlignmentFunction (biology)Snake VenomsToxicon : official journal of the International Society on Toxinology
researchProduct

Evolution of Snake Venom Disintegrins by Positive Darwinian Selection

2008

PII-disintegrins, cysteine-rich polypeptides broadly distributed in the venoms of geographically diverse species of vipers and rattlesnakes, antagonize the adhesive functions of beta(1) and beta(3) integrin receptors. PII-disintegrins evolved in Viperidae by neofunctionalization of disintegrin-like domains of duplicated PIII-snake venom hemorrhagic metalloproteinase (SVMP) genes recruited into the venom proteome before the radiation of the advanced snakes. Minimization of the gene (loss of introns and coding regions) and the protein structures (successive loss of disulfide bonds) underpins the postduplication divergence of disintegrins. However, little is known about the underlying genetic …

Models MolecularProtein ConformationDisintegrinsMolecular Sequence DataEvolution MolecularNegative selectionPhylogeneticsMolecular evolutionViperidaeGeneticsDisintegrinAnimalsAmino Acid SequenceSelection GeneticMolecular BiologyGenePhylogenyEcology Evolution Behavior and SystematicsGeneticsEvolution of snake venomBinding SitesbiologyPhylogenetic treeMultigene Familybiology.proteinNeofunctionalizationProtein MultimerizationSnake VenomsMolecular Biology and Evolution
researchProduct

Lack of GDAP1 induces neuronal calcium and mitochondrial defects in a knockout mouse model of Charcot-Marie-tooth neuropathy

2015

27 páginas, 9 figuras.

Mitochondrial proteinCancer Researchlcsh:QH426-470Nerve Tissue ProteinsBiologyMitochondrionCharcot-Marie-Tooth diseaseGDAP1 geneMiceGeneticsAutophagyAnimalsCalcium SignalingMolecular BiologyGenetics (clinical)Ecology Evolution Behavior and SystematicsCytoskeletonCalcium signalingGeneticsVoltage-dependent calcium channelEndoplasmic reticulumAutophagyBiología y Biomedicina / BiologíaAxonsCell biologyMitochondriaMitochondrialMice Inbred C57BLAlpha tubulinlcsh:Geneticsmitochondrial fusionKnockout mouseMitochondrial fissionCalcium ChannelsAnimal cellGene DeletionResearch Article
researchProduct

cDNA Cloning and Functional Expression of Jerdostatin, a Novel RTS-disintegrin from Trimeresurus jerdonii and a Specific Antagonist of the α1β1 Integ…

2005

Jerdostatin represents a novel RTS-containing short disintegrin cloned by reverse transcriptase-PCR from the venom gland mRNA of the Chinese Jerdons pit viper Trimeresurus jerdonii. The jerdostatins precursor cDNA contained a 333-bp open reading frame encoding a signal peptide, a pre-peptide, and a 43-amino acid disintegrin domain, whose amino acid sequence displayed 80% identity with that of the KTS-disintegrins obtustatin and viperistatin. The jerdostatin cDNA structure represents the first complete open reading frame of a short disintegrin and points to the emergence of jerdostatin from a short-coding gene. The different residues between jerdostatin and obtustatin/viperistatin are segreg…

Models MolecularSignal peptideProtein FoldingDNA ComplementaryMagnetic Resonance SpectroscopyProtein ConformationDisintegrinsMolecular Sequence DataIntegrinMutantGene ExpressionPeptide MappingBiochemistryIntegrin alpha1beta1Open Reading FramesExocrine GlandsComplementary DNACrotalid VenomsDisintegrinAnimalsTrimeresurusTrypsinAmino Acid SequenceCysteineDisulfidesCloning MolecularMolecular BiologyPeptide sequenceMessenger RNABase SequencebiologyCell BiologyMolecular biologyRecombinant ProteinsOpen reading frameMutagenesis Site-Directedbiology.proteinJournal of Biological Chemistry
researchProduct