6533b858fe1ef96bd12b5a15

RESEARCH PRODUCT

Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber

Eric LantzHervé MaillottePatrice Tchofo DindaThibaut Sylvestre

subject

Materials scienceRaman amplification[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonicbusiness.industrySingle-mode optical fiberNonlinear optics02 engineering and technology01 natural sciencesAtomic and Molecular Physics and Optics010309 opticssymbols.namesake020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringsymbols[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicRaman spectroscopybusinessSelf-phase modulationRaman scatteringMixing (physics)Parametric statistics

description

International audience; We demonstrate efficient frequency conversion with large frequency shifts of an anti-Stokes signal into a parametrically seeded Stokes idler, which is generated by a highly mismatched three-wave mixing interaction and subsequent Raman amplification in a normally dispersive single-mode fiber. The use of non-phase-matched waves in Raman-assisted three-wave mixing interactions overcomes the strict spectral limitations imposed by phase-matching conditions in parametric frequency-conversion processes.

https://hal.science/hal-00869581