0000000000041069

AUTHOR

Hervé Maillotte

Demonstration of polarization pulling in a fiber-optical parametric amplifier

International audience; We report the experimental demonstration of all-optical polarization pulling of an initially polarization-scrambled signal using a fiber-optical parametric amplifier. Nonlinear polarization pulling has been achieved for both the signal and idler with 25 dB gain.

research product

Tunable source of infrared pulses in gas-filled hollow core capillary

International audience; We report a tunable source that generates pulses in the infrared from an optical parametric amplification in a gas-filled hollow core capillary based on four-wave mixing process, in which the phase matching strongly depends on the gas pressure and the pump. In our case, we have generated pulses from 1 to 1.6 m in the sub-µJ level together with a parametric amplification in the visible.

research product

Generation of vector dark-soliton trains by induced modulational instability in a highly birefringent fiber

International audience; We present a set of experimental observations that demonstrate the generation of vector trains of dark-soliton pulses in the orthogonal axes of a highly birefringent optical fiber. We generated dark-soliton trains with terahertz repetition rate in the normal group-velocity dispersion regime by inducing a polarization modulational instability by mixing two intense, orthogonal continuous laser beams. Numerical solutions of the propagation equations were used to optimize the emission of vector dark pulses at the fiber output.

research product

Amplification paramétrique d'impulsion ultra-courte dans les fibres optiques

International audience;

research product

High efficiency frequency doubling in fully diced LiNbO3ridge waveguides on silicon

Nonlinear periodically poled ridge LiNbO3 waveguides have been fabricated on silicon substrates. Components are carved with only the use of a precision dicing machine without the need for grinding or polishing steps. They show efficient second harmonic generation at telecommunication wavelengths with normalized conversion reaching 204%/W in a 15 mm long device. The influence of the geometrical non uniformities of waveguides due to fabrication processes is asserted. Characteristics of the components are studied; notably their robustness and tunability versus temperature.

research product

Demonstration of Stimulated-Raman-scattering suppression in optical fibers in a multifrequency pumping configuration

International audience; We analyze the stimulated-Raman-scattering-(SRS) process induced by a linearly polarized multifrequency pump field in a normally dispersive single-mode fiber. We show, by theoretical analysis and numerical simulations, that the SRS process may be either controlled by switching all the generated Stokes radiations to the lowest-frequency pump or suppressed for all the frequency components of the pump field. The suppression process is achieved by an appropriate choice of the frequency separation between the pumps and a particular power distribution among the frequency components of the pump field. We present experimental spectra showing the effectiveness of this suppres…

research product

Suppression of stimulated Raman scattering in optical fibres by power-controlled multifrequency pumping

International audience; We present a method for suppressing the stimulated Raman scattering process induced by a multifrequency pump field propagating in a normally dispersive single-mode fibre. The suppression process is completely achieved by suitably choosing the frequency separation between the pumps, as well as the power distribution among the frequency components of the pump field. The experimental spectra show the effectiveness of this suppression process for a dual-frequency pumping configuration.

research product

A Brillouin fiber laser at 2 µm based on a step-index tellurite (TeO2) optical fiber

International audience; We demonstrate Brillouin lasing at 2-µm using a step-index Tellurite-glass optical fiber in a passive fiber ring cavity. A low lasing threshold of 70 mW was achieved with a Brillouin gain of 1.05 × 10-10 m/W for a Brillouin frequency shift of 6.165 GHz. Stimulated Brillouin scattering (SBS) in optical fibers is a nonlinear process with important applications such as distributed optical fiber sensing, microwave photonics, optical storage, and fiber lasers. The latter application has attracted significant interest as highly coherent laser sources with sub-Hz linewidth can be achieved using SBS in optical cavities. To date, most of Brillouin fibers lasers (BFLs) have be…

research product

Wavelength conversion from 1.3 µm to 1.5 µm in single-mode optical fibres using Raman-assisted three-wave mixing

International audience; We theoretically analyse the achievement of wide-range all-optical wavelength conversion of a 1.31 µm signal to an idler wave in the 1.5 µm spectral region by Raman-assisted three-wave mixing in single-mode optical fibres. Raman-assisted three-wave mixing allows efficient conversion on a large frequency detuning bandwidth while alleviating the need for stringent phase-matching conditions.

research product

Demonstration of polarization pulling using a fiber-optic parametric amplifier

International audience; We report the observation of all-optical polarization pulling of an initially polarization-scrambled signal using parametric amplification in a highly nonlinear optical fiber. Broadband polarization pulling has been achieved both for the signal and idler waves with up to 25 dB gain using the strong polarization sensitivity of parametric amplifiers. We further derive the probability distribution function for the final polarization state, assuming a randomly polarized initial state, and we show that it agrees well with the experiments.

research product

Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion

International audience; We analyse theoretically and experimentally the Raman-assisted parametric coupling between non-phase-matched waves propagating in normally dispersive single-mode fibres. We perform a careful analysis of the wave-coupling behaviour, which shows that scalar and vector three-wave mixing (TWM) interactions induce a relatively small periodic power flow between a central-frequency pump at frequency ω0 and a pair of up-shifted (anti-Stokes) and down-shifted (Stokes) sidebands at frequencies View the MathML source and View the MathML source, respectively. For sufficiently high pump powers, the stimulated Raman scattering enters into play, causing a unilateral transfer of ene…

research product

Four-wave mixing process induced by a self-phase modulated pulse in a hollow core capillary

International audience; <span class="markedContent" id="page11R_mcid8"&gt<span style="left: 247.583px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif;" role="presentation" dir="ltr"&gt</span&gt<span style="left: 253px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif; transform: scaleX(0.941702);" role="presentation" dir="ltr"&gtIn this work, we investigate the modal </span&gt<span style="left: 518.183px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif;" role="presentation" dir="ltr"&gt </span&gt<span style="left: 519.8px; top: 366.24px; font-size: 16.6667px; font-family: sans-serif; transform: scaleX(0.958087);" role="presentation" dir="ltr"&gtfour wa…

research product

Peignes de fréquences générées par effet Kerr en cavité laser Brillouin autour de 1.55 µm et 2 µm

International audience; Nous reportons la génération de peignes de fréquences optiques par effet hybride Brillouin/Kerr dans une cavité laserà fibre optique. Ces peignes, opérantà 1,55 µm et 2 µm, sont accor-dables avec des taux de répétitions allant jusqu'à plusieurs centaines de GHz. Ils pourraient trouver un intérêt applicatif notamment en spectroscopie moléculaire.

research product

Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber

International audience; We demonstrate efficient frequency conversion with large frequency shifts of an anti-Stokes signal into a parametrically seeded Stokes idler, which is generated by a highly mismatched three-wave mixing interaction and subsequent Raman amplification in a normally dispersive single-mode fiber. The use of non-phase-matched waves in Raman-assisted three-wave mixing interactions overcomes the strict spectral limitations imposed by phase-matching conditions in parametric frequency-conversion processes.

research product

Optical parametric amplification in gas-filled hollow-core capillary for the generation of tunable pulses in the infrared

International audience; Ultrashort pulses in the near-infrared (NIR) to mid-infrared (MIR) are widely used for laser matter interaction experiments, e.g. the relaxation process of carrier semiconductors and chemical dynamics at the femtosecond and attosecond time scale [1, 2]. Many different approaches based on nonlinear processes or laser devices can be found to generate pulses in theses spectral ranges. Recently, four wave mixing (FWM) based parametric amplification in gas-filled hollow core capillary (HCC) has been used to create a tunable source of ultrashort pulses. For example, pulses can be generated in the visible with an energy at the 10 µJ level [4] and in the near infrared at ~1.…

research product

Stimulated Brillouin scattering in Germanium-doped-core optical fibers up to 98% mol doping level

International audience; We experimentally investigate stimulated Brillouin scattering in several highly GeO2-doped optical fibers and report wide frequency tunability over more than 3 GHz and Brillouin gain 7 times larger than in standard silica fibers.

research product

Information processing systems

International audience;

research product