6533b858fe1ef96bd12b5ae8
RESEARCH PRODUCT
Interface Amorphization of Two‐Dimensional Black Phosphorus upon Treatment with Diazonium Salts
Gonzalo AbellánGonzalo AbellánAndreas HirschMichael FickertMhamed AssebbanMhamed AssebbanStefan WildFrank HaukeAleksandra MitrovićAleksandra MitrovicBence G. MárkusFerenc SimonVicent Lloretsubject
Thermogravimetric analysisred phosphoruschemistry.chemical_element010402 general chemistryPhotochemistryMass spectrometryblack phosphorus01 natural sciencesCatalysislaw.inventionsymbols.namesakeX-ray photoelectron spectroscopylawElectron paramagnetic resonanceMaterialsFull Paper010405 organic chemistryChemistryPhosphorusOrganic ChemistryBalz–Schiemann productGeneral ChemistryQuímicaFull Paperssacrificial catalysts6. Clean waterMaterials Science | Hot Paperamorphization0104 chemical sciencesElectrophilesymbolsSurface modificationRaman spectroscopyddc:547description
Abstract Two‐dimensional (2D) black phosphorus (BP) represents one of the most appealing 2D materials due to its electronic, optical, and chemical properties. Many strategies have been pursued to face its environmental instability, covalent functionalization being one of the most promising. However, the extremely low functionalization degrees and the limitations in proving the nature of the covalent functionalization still represent challenges in many of these sheet architectures reported to date. Here we shine light on the structural evolution of 2D‐BP upon the addition of electrophilic diazonium salts. We demonstrated the absence of covalent functionalization in both the neutral and the reductive routes, observing in the latter case an unexpected interface conversion of BP to red phosphorus (RP), as characterized by Raman, 31P‐MAS NMR, and X‐ray photoelectron spectroscopies (XPS). Furthermore, thermogravimetric analysis coupled to gas chromatography and mass spectrometry (TG‐GC‐MS), as well as electron paramagnetic resonance (EPR) gave insights into the potential underlying radical mechanism, suggesting a Sandmeyer‐like reaction.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 | Chemistry – A European Journal |