6533b858fe1ef96bd12b5b67
RESEARCH PRODUCT
Variable exponent p(x)-Kirchhoff type problem with convection
Calogero Vetrosubject
ConvectionKirchhoff type termApplied MathematicsWeak solutionMathematical analysisWeak solutionGeneralized solutionType (model theory)ConvectionTerm (time)Pseudomonotone operatorNonlinear systemsymbols.namesakeMonotone polygonGalerkin basisSettore MAT/05 - Analisi MatematicaDirichlet boundary conditionsymbolsGalerkin methodAnalysisMathematicsdescription
Abstract We study a nonlinear p ( x ) -Kirchhoff type problem with Dirichlet boundary condition, in the case of a reaction term depending also on the gradient (convection). Using a topological approach based on the Galerkin method, we discuss the existence of two notions of solutions: strong generalized solution and weak solution. Strengthening the bound on the Kirchhoff type term (positivity condition), we establish existence of weak solution, this time using the theory of operators of monotone type.
year | journal | country | edition | language |
---|---|---|---|---|
2022-02-15 |