6533b858fe1ef96bd12b635d
RESEARCH PRODUCT
Understanding retention and metabolization of aroma compounds using an in vitro model of oral mucosa.
Sarah PloyonIsabelle AndriotFrancis CanonMartine MorzelMarine Brulésubject
Chemical structureTR146/MUC1 cellsAcyclic MonoterpenesKinetics01 natural sciencesGas Chromatography-Mass SpectrometryAnalytical Chemistrychemistry.chemical_compoundEating0404 agricultural biotechnologyLinaloolPentanonesmedicineMoleculeHumans[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringOral mucosaaroma persistenceSalivaAromaaroma metabolismVolatile Organic Compoundsbiologyoral mucosaChemistry010401 analytical chemistryaroma retentionMouth MucosaEthyl hexanoatefood and beverages04 agricultural and veterinary sciencesGeneral Medicinebiology.organism_classification040401 food scienceIn vitro0104 chemical sciencesmedicine.anatomical_structureBiochemistrymucosal pelliclearoma releasein vitro modelOdorants[SDV.AEN]Life Sciences [q-bio]/Food and NutritionFood Sciencedescription
International audience; The mechanism leading to aroma persistence during eating is not fully described. This study aims at better understanding the role of the oral mucosa in this phenomenon. Release of 14 volatile compounds from different chemical classes was studied after exposure to in vitro models of oral mucosa, at equilibrium by Gas-Chromatography-Flame Ionization Detection (GC-FID) and in dynamic conditions by Proton Transfer Reaction- Mass Spectrometry (PTR-MS). Measurements at equilibrium showed that mucosal hydration reduced the release of only two compounds, pentan-2-one and linalool (p < 0.05), and suggested that cells could metabolize aroma compounds from different chemical families (penta-2,3-dione, trans-2-hexen-1-al, ethyl hexanoate, nonan- and decan-2-one). Dynamic analyses for pentan-2-one and octan-2-one evidenced that the constituents of the mucosal pellicle influenced release kinetics differently depending on molecule hydrophobicity. This work suggests that mucosal cells can metabolize aroma compounds and that non-covalent interactions occur between aroma compounds and oral mucosa depending on aroma chemical structure.
year | journal | country | edition | language |
---|---|---|---|---|
2020-07-15 | Food chemistry |