6533b858fe1ef96bd12b639f
RESEARCH PRODUCT
Tuning of the Mg Alloy AZ31 Anodizing Process for Biodegradable Implants
Monica SantamariaAndrea ZafforaDanilo VirtùGiulio GhersiFrancesco Carfì PaviaFrancesco Di FrancoSannakaisa Virtanensubject
Materials scienceAnnealing (metallurgy)Surface PropertiesAlloyMagnesium Compounds02 engineering and technologyElectrolyteengineering.material010402 general chemistry01 natural sciencesbiomedicalCorrosionCell LinePhosphatesMiceCoated Materials BiocompatibleAbsorbable ImplantsMaterials TestingAlloysAnimalsGeneral Materials ScienceMg alloyElectrodesMagnesium phosphatecorrosion resistanceAnodizing021001 nanoscience & nanotechnology0104 chemical sciencesDielectric spectroscopyCorrosionSettore ING-IND/23 - Chimica Fisica Applicataelectrochemical impedance spectroscopyChemical engineeringengineeringGravimetric analysishard anodizing0210 nano-technologyResearch Articledescription
Coatings were grown on the AZ31 Mg alloy by a hard anodizing process in the hot glycerol phosphate-containing electrolyte. Anodizing conditions were optimized, maximizing corrosion resistance estimated by impedance measurements carried out in Hank's solution at 37 °C. A post anodizing annealing treatment (350 °C for 24 h) allowed us to further enhance the corrosion resistance of the coatings mainly containing magnesium phosphate according to energy-dispersive X-ray spectroscopy and Raman analyses. Gravimetric measurements revealed a hydrogen evolution rate within the limits acceptable for application of AZ31 in biomedical devices. In vitro tests demonstrated that the coatings are biocompatible with a preosteoblast cell line.
year | journal | country | edition | language |
---|---|---|---|---|
2021-03-01 | ACS Applied Materials & Interfaces |