6533b858fe1ef96bd12b6429

RESEARCH PRODUCT

Vibrational properties of the surface-nonbridging oxygen in silica nanoparticles

Lavinia VaccaroV. RadzigMarco Cannas

subject

Silica nanoparticlesSurface (mathematics)Full width at half maximumMaterials sciencedefectsnanoparticles luminescence time resolved measurements silicaNanoparticleLuminescence spectraCondensed Matter PhysicsMolecular physicsMolecular electronic transitionElectronic Optical and Magnetic MaterialsNonbridging oxygenLine (formation)

description

By studying the site-selective luminescence spectra of oxidized silica nanoparticles we identify the electronic and the vibrational lines associated with the surface nonbridging oxygen, $\ensuremath{\equiv}{\text{Si-O}}^{\ifmmode\bullet\else\textbullet\fi{}}$. This defect emits a zero-phonon line inhomogeneously distributed around 2.0 eV with full width at half maximum of 0.04 eV, weakly coupled with the local ${\text{Si-O}}^{\ifmmode\bullet\else\textbullet\fi{}}$ stretching mode whose frequency is measured to be $920\text{ }{\text{cm}}^{\ensuremath{-}1}$. These findings are different from those of the well-characterized defect in the bulk silica thus evidencing structural peculiarities of the surface defect that is characterized by a nearly unperturbed nonbridging oxygen and of the nanoparticles that induce a narrower inhomogeneous broadening of the electronic transition.

https://doi.org/10.1103/physrevb.78.233408