6533b858fe1ef96bd12b649d

RESEARCH PRODUCT

Density of Lipschitz functions in energy

Sylvester Eriksson-bique

subject

Primary 46E35 Secondary 30L99 26B30 28A12Mathematics - Classical Analysis and ODEsApplied MathematicsClassical Analysis and ODEs (math.CA)FOS: MathematicsfunktionaalianalyysiAnalysis

description

In this paper, we show that the density in energy of Lipschitz functions in a Sobolev space $N^{1,p}(X)$ holds for all $p\in [1,\infty)$ whenever the space $X$ is complete and separable and the measure is Radon and finite on balls. Emphatically, $p=1$ is allowed. We also give a few corollaries and pose questions for future work. The proof is direct and does not involve the usual flow techniques from prior work. It also yields a new approximation technique, which has not appeared in prior work. Notable with all of this is that we do not use any form of Poincar\'e inequality or doubling assumption. The techniques are flexible and suggest a unification of a variety of existing literature on the topic.

http://urn.fi/URN:NBN:fi:jyu-202302151761