6533b858fe1ef96bd12b64c0

RESEARCH PRODUCT

Can we use time-resolved measurements to get Steady-State Transport data for Halide perovskites?

Satyajit GuptaIgal LevineOded MilloDoron AzulayDoron AzulayDengyang GuoAchintya BeraTom J. SavenijeJorge ÁVilaDavide Raffaele CerattiGary HodesDavid CahenHenk J. BolinkIsaac Balberg

subject

PhotoluminescenceSteady stateMaterials scienceAmbipolar diffusionbusiness.industryPhotoconductivityGeneral Physics and AstronomyFOS: Physical sciencesPhysics - Applied Physics02 engineering and technologyApplied Physics (physics.app-ph)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesComputational physicsLength measurementSemiconductorThin film0210 nano-technologybusinessExcitation

description

Time-resolved, pulsed excitation methods are widely used to deduce optoelectronic properties of semiconductors, including now also Halide Perovskites (HaPs), especially transport properties. However, as yet, no evaluation of their amenability and justification for the use of the results for the above-noted purposes has been reported. To check if we can learn from pulsed measurement results about steady-state phototransport properties, we show here that, although pulsed measurements can be useful to extract information on the recombination kinetics of HaPs, great care should be taken. One issue is that no changes in the material are induced during or as a result of the excitation, and another one concerns in how far pulsed excitation-derived data can be used to find relevant steady-state parameters. To answer the latter question, we revisited pulsed excitation and propose a novel way to compare between pulsed and steady state measurements at different excitation intensities. We performed steady-state photoconductivity and ambipolar diffusion length measurements, as well as pulsed time-resolved microwave conductivity and time-resolved photoluminescence measurements as a function of excitation intensity on the same samples of different MAPbI3 thin films, and found good quasi-quantitative agreement between the results, explaining them with a generalized single level recombination model that describes the basic physics of phototransport of HaP absorbers. Moreover, we find the first experimental manifestation of the boundaries between several effective recombination regimes that exist in HaPs, by analyzing their phototransport behavior as a function of excitation intensity.

https://dx.doi.org/10.48550/arxiv.1805.00263