0000000001012842

AUTHOR

David Cahen

showing 3 related works from this author

Advances in Perovskite Solar Cells.

2015

Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures…

FabricationMaterials scienceapplicationsGeneral Chemical EngineeringGeneral Physics and AstronomyMedicine (miscellaneous)ReviewsNanotechnology02 engineering and technologyReview010402 general chemistry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)perovskite solar cellsdevice structuresGeneral Materials ScienceHigh absorptionPerovskite (structure)business.industryPhotovoltaic systemEnergy conversion efficiencyGeneral Engineering021001 nanoscience & nanotechnology0104 chemical sciencesAbsorption edgeOptoelectronicsCharge carrier0210 nano-technologybusinessAdvanced science (Weinheim, Baden-Wurttemberg, Germany)
researchProduct

Can we use time-resolved measurements to get Steady-State Transport data for Halide perovskites?

2018

Time-resolved, pulsed excitation methods are widely used to deduce optoelectronic properties of semiconductors, including now also Halide Perovskites (HaPs), especially transport properties. However, as yet, no evaluation of their amenability and justification for the use of the results for the above-noted purposes has been reported. To check if we can learn from pulsed measurement results about steady-state phototransport properties, we show here that, although pulsed measurements can be useful to extract information on the recombination kinetics of HaPs, great care should be taken. One issue is that no changes in the material are induced during or as a result of the excitation, and anothe…

PhotoluminescenceSteady stateMaterials scienceAmbipolar diffusionbusiness.industryPhotoconductivityGeneral Physics and AstronomyFOS: Physical sciencesPhysics - Applied Physics02 engineering and technologyApplied Physics (physics.app-ph)010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesComputational physicsLength measurementSemiconductorThin film0210 nano-technologybusinessExcitation
researchProduct

Combinatorial Vacuum-Deposition of Wide Bandgap Perovskite Films and Solar Cells

2022

The development of vacuum-deposited perovskite materials and devices is partially slowed down by the minor research effort in this direction, due to the high cost of the required research tools. But there is also another factor, thermal co-deposition in high vacuum involves the simultaneous sublimation of several precursors with an overall deposition rate in the range of few Å s−1 . This leads to a deposition time of hours with only a single set of process parameters per batch, hence to a long timeframe to optimize even a single perovskite composition. Here we report the combinatorial vacuum deposition of wide bandgap perovskites using 4 sources and a non-rotating sample holder. By using sm…

Mechanics of MaterialsMechanical EngineeringMaterialsCèl·lules fotoelèctriques
researchProduct