6533b858fe1ef96bd12b6d81

RESEARCH PRODUCT

Distributed Real-Time Sentiment Analysis for Big Data Social Streams

Amir Hossein Akhavan Rahnama

subject

Data streamFOS: Computer and information sciencesComputer Science - Computation and LanguageComputer sciencebusiness.industryData stream miningSentiment analysisBig dataMachine Learning (stat.ML)Databases (cs.DB)Data structurecomputer.software_genreField (computer science)Computer Science - Information RetrievalTree (data structure)Computer Science - DatabasesComputer Science - Distributed Parallel and Cluster ComputingAnalyticsStatistics - Machine LearningData miningDistributed Parallel and Cluster Computing (cs.DC)businesscomputerComputation and Language (cs.CL)Information Retrieval (cs.IR)

description

Big data trend has enforced the data-centric systems to have continuous fast data streams. In recent years, real-time analytics on stream data has formed into a new research field, which aims to answer queries about "what-is-happening-now" with a negligible delay. The real challenge with real-time stream data processing is that it is impossible to store instances of data, and therefore online analytical algorithms are utilized. To perform real-time analytics, pre-processing of data should be performed in a way that only a short summary of stream is stored in main memory. In addition, due to high speed of arrival, average processing time for each instance of data should be in such a way that incoming instances are not lost without being captured. Lastly, the learner needs to provide high analytical accuracy measures. Sentinel is a distributed system written in Java that aims to solve this challenge by enforcing both the processing and learning process to be done in distributed form. Sentinel is built on top of Apache Storm, a distributed computing platform. Sentinel's learner, Vertical Hoeffding Tree, is a parallel decision tree-learning algorithm based on the VFDT, with ability of enabling parallel classification in distributed environments. Sentinel also uses SpaceSaving to keep a summary of the data stream and stores its summary in a synopsis data structure. Application of Sentinel on Twitter Public Stream API is shown and the results are discussed.

https://dx.doi.org/10.48550/arxiv.1612.08543