6533b859fe1ef96bd12b6e24
RESEARCH PRODUCT
The Descriptive Complexity Approach to LOGCFL
Heribert VollmerPierre MckenzieClemens LautemannThomas Schwenticksubject
FOS: Computer and information sciencesFinite model theoryUnary operationComputer Networks and Communicationsautomata and formal languages0102 computer and information sciencesComputational Complexity (cs.CC)Computer Science::Computational ComplexityArityDescriptive complexity theory01 natural sciencesTheoretical Computer ScienceComputer Science::Logic in Computer ScienceNondeterministic finite automaton0101 mathematicsLOGCFLMathematicsDiscrete mathematicscomputational complexityApplied Mathematics010102 general mathematicsdescriptive complexityNondeterministic algorithmComputer Science - Computational Complexityfinite model theoryQuantifier (logic)Computational Theory and Mathematics010201 computation theory & mathematicsF.1.3description
Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.
year | journal | country | edition | language |
---|---|---|---|---|
1998-09-28 | Journal of Computer and System Sciences |