6533b859fe1ef96bd12b6f45

RESEARCH PRODUCT

A Network Model for the Correlation between Epistasis and Genomic Complexity

Rafael SanjuánRafael SanjuánMiguel NebotMiguel Nebot

subject

0106 biological sciencesSilent mutationGenome evolutionDNA Mutational Analysislcsh:MedicineBiology010603 evolutionary biology01 natural sciencesGenomeModels BiologicalCorrelation03 medical and health sciencesComputational Biology/Metabolic NetworksGenetics and Genomics/Population GeneticsAnimalsHumanslcsh:Science030304 developmental biologyGenomic organization0303 health sciencesEvolutionary BiologyMultidisciplinaryComputational Biology/Systems BiologyGenomeEvolutionary Biology/Evolutionary and Comparative GeneticsModels GeneticHuman evolutionary geneticsSystems Biologylcsh:RRobustness (evolution)Computational BiologyGenetics and GenomicsEpistasis GeneticGenomicsModels TheoreticalEvolutionary biologyMutationEpistasislcsh:QAlgorithmsResearch Article

description

The study of genetic interactions (epistasis) is central to the understanding of genome organization and evolution. A general correlation between epistasis and genomic complexity has been recently shown, such that in simpler genomes epistasis is antagonistic on average (mutational effects tend to cancel each other out), whereas a transition towards synergistic epistasis occurs in more complex genomes (mutational effects strengthen each other). Here, we use a simple network model to identify basic features explaining this correlation. We show that, in small networks with multifunctional nodes, lack of redundancy, and absence of alternative pathways, epistasis is antagonistic on average. In contrast, lack of multi-functionality, high connectivity, and redundancy favor synergistic epistasis. Moreover, we confirm the previous finding that epistasis is a covariate of mutational robustness: in less robust networks it tends to be antagonistic whereas in more robust networks it tends to be synergistic. We argue that network features associated with antagonistic epistasis are typically found in simple genomes, such as those of viruses and bacteria, whereas the features associated with synergistic epistasis are more extensively exploited by higher eukaryotes.

10.1371/journal.pone.0002663http://europepmc.org/articles/PMC2481279