6533b859fe1ef96bd12b7677
RESEARCH PRODUCT
Linearization of holomorphic mappings on fully nuclear spaces with a basis
Manuel MaestreSeán DineenPablo GalindoDomingo Garcíasubject
Discrete mathematicsPure mathematicsLinearizationGeneral MathematicsSuperfunctionHolomorphic functional calculusComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHolomorphic functionAnalyticity of holomorphic functionsOpen mapping theorem (complex analysis)Identity theoremMathematicsdescription
In [13] Mazet proved the following result.If U is an open subset of a locally convex space E then there exists a complete locally convex space (U) and a holomorphic mapping δU: U→(U) such that for any complete locally convex space F and any f ɛ ℋ (U;F), the space of holomorphic mappings from U to F, there exists a unique linear mapping Tf: (U)→F such that the following diagram commutes;The space (U) is unique up to a linear topological isomorphism. Previously, similar but less general constructions, have been considered by Ryan [16] and Schottenloher [17].
year | journal | country | edition | language |
---|---|---|---|---|
1994-05-01 | Glasgow Mathematical Journal |