6533b859fe1ef96bd12b787c

RESEARCH PRODUCT

Finite-size scaling of vector and axial current correlators

Pilar HernándezMikko LaineKarl JansenPoul H. DamgaardLaurent Lellouch

subject

QuarkPhysicsNuclear and High Energy PhysicsChiral perturbation theoryFinite volume methodHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFOS: Physical sciencesFísicaParticle Physics - LatticeObservableCompton wavelengthHigh Energy Physics - LatticePionLattice (order)Quantum electrodynamicsScaling

description

Using quenched chiral perturbation theory, we compute the long-distance behaviour of two-point functions of flavour non-singlet axial and vector currents in a finite volume, for small quark masses, and at a fixed gauge-field topology. We also present the corresponding predictions for the unquenched theory at fixed topology. These results can in principle be used to measure the low-energy constants of the chiral Lagrangian, from lattice simulations in volumes much smaller than one pion Compton wavelength. We show that quenching has a dramatic effect on the vector correlator, which is argued to vanish to all orders, while the axial correlator appears to be a robust observable only moderately sensitive to quenching.

10.1016/s0550-3213(03)00117-2https://pub.uni-bielefeld.de/record/2322817