6533b859fe1ef96bd12b79c5

RESEARCH PRODUCT

Adiabatic transport of Cooper pairs in arrays of Josephson junctions

D. V. AverinJukka P. PekolaM. AunolaJ. Jussi ToppariM. T. Savolainen

subject

Josephson effectPhysicsCondensed Matter::Quantum GasesCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivitySupercurrentFOS: Physical sciencesCoulomb blockadeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSuperconductivity (cond-mat.supr-con)Pi Josephson junctionQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionCooper pairAdiabatic processQuantum tunnelling

description

We have developed a quantitative theory of Cooper pair pumping in gated one-dimensional arrays of Josephson junctions. The pumping accuracy is limited by quantum tunneling of Cooper pairs out of the propagating potential well and by direct supercurrent flow through the array. Both corrections decrease exponentially with the number N of junctions in the array, but give a serious limitation of accuracy for any practical array. The supercurrent at resonant gate voltages decreases with N only as sin(v/N)/N, where v is the Josephson phase difference across the array.

10.1103/physrevb.60.r9931http://arxiv.org/abs/cond-mat/9904264