6533b859fe1ef96bd12b7f86

RESEARCH PRODUCT

Dielectric breakdown of fast switching LCD shutters

Martins RutkisEdgars NitissArtur MedvidIlmars SekacisGatis Mozolevskis

subject

010302 applied physicsMaterials scienceLiquid-crystal displayDielectric strengthbusiness.industryHigh voltageSputter deposition01 natural scienceslaw.invention010309 opticsSwitching timeOpticsOptical coatinglawLiquid crystal0103 physical sciencesOptoelectronicsThin filmbusiness

description

Fast liquid crystal optical shutters due to fast switching, vibrationless control and optical properties have found various applications: substitutes for mechanical shutters, 3D active shutter glasses, 3D volumetric displays and more. Switching speed depends not only on properties of liquid crystal, but also on applied electric field intensity. Applied field in the shutters can exceed >10 V/micron which may lead to dielectric breakdown. Therefore, a dielectric thin film is needed between transparent conductive electrodes in order to reduce breakdown probability. In this work we have compared electrical and optical properties of liquid crystal displays with dielectric thin films with thicknesses up to few hundred nanometers coated by flexo printing method and magnetron sputtering. Dielectric breakdown values show flexographic thin films to have higher resistance to dielectric breakdown, although sputtered coatings have better optical properties, such as higher transmission and no coloration.

https://doi.org/10.1117/12.2252492