0000000000180177
AUTHOR
Gatis Mozolevskis
Investigation of temperature dependence of magnetic properties of Cr$_2$O$_3$ thin film structure using a magnetic field imaging technique based on Nitrogen-Vacancy centres in diamond crystal
This work presents a magnetic field imaging method based on color centres in diamond crystal applied to thin film structure. To demonstrate the capacity of our device we have used it for characterization of magnetic properties in microscopic scale of Cr$_2$O$_3$ thin film structure above and below N\'eel temperature. The obtained measurement results clearly identify the detection of the magnetic phase transition of Cr$_2$O$_3$ thin film with an unexpected diamagnetic like behaviour at 19$^{\circ}$C (below the N\'eel temperature of Cr$_2$O$_3$). To have better insights in the magnetic fields created by the thin films we present simulations of the magnetic fields near the thin film surface. W…
Theoretical Development of Polymer-Based Integrated Lossy-Mode Resonance Sensor for Photonic Integrated Circuits
This research was funded by the European Regional Development Fund project “Development of a Novel Microfluidic Device for Label-Free Quantification of Prostate Cancer-Derived Extracellular Vesicles and Analysis of their RNA Content” (PROCEX) (1.1.1.1/20/A/045) and the European Union’s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.
Cryogenic nanoelectromechanical switch enabled by Bi2Se3 nanoribbons
Abstract Nanoelectromechanical (NEM) switches are potential candidates for memory and logic devices for low standby-current and harsh environment applications. Cryogenic operation of these devices would allow to use them, e.g., in space probes and in conjunction with quantum computers. Herein, it is demonstrated that cryogenic application requirements such as good flexibility and conductivity are satisfied by using Bi2Se3 nanoribbons as active elements in NEM switches. Experimental proof of principle NEM switching at temperatures as low as 5 K is achieved in volatile and non-volatile reversible regimes, exhibiting distinct ON and OFF states, backed by theoretical modelling. The results open…
Sputtered SiOxNy thin films: improving optical efficiency of liquid crystal diffuser elements in multi-focal near-to-eye display architecture
In this work we present reactive sputtered SiOxNy films with a variable refractive index as a convienent solution for contrast improvement of liquid crystal diffuser multi stacks in near-to-eye AR/VR displays. The focus concerns minimization of light reflections between internal structures, in particular ITO, by optimizing internal layers through tailored properties of thin film coatings, as well as subsequent laser patterning of thin film stack. Inorganic thin films have been deposited on glass by physical vapor deposition. Corresponding refractive index, thickness, uniformity and dielectric characteristics and other electro-optical properties have been measured and their impact on the res…
Lung on a Chip Development from Off-Stoichiometry Thiol–Ene Polymer
Institute of Solid-State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. Finally, we would like to thank Biol. Kaspars Tars from Latvian Biomedical research and study center for giving us the opportunity to participate in this consortium and contribute to Latvian scientists’ effort in response to the COVID-19 pandemic.
Electric breakdown of dielectric thin films for high-voltage display applications
Smectic A liquid crystal is one of the most promising material for smart glass application due to infinite bistability and low haze at clear state. Voltage is needed to switch from scattering to transparent and it is likely for dielectric breakdown to occur. In order to reduce the probability of dielectric breakdown to occur, a dielectric insulating coating is usually employed. In this work we have compared electrical and optical properties of SiO2 thin films with thickness up to 500 nm coated by flexographic printing and reactive magnetron sputtering. IV characteristics and dielectric breakdown values show sputtered coatings to have higher dielectric strength. For sputtered coatings with t…
Pulsed Electric Fields Alter Expression of NF-κB Promoter-Controlled Gene
The possibility to artificially adjust and fine‐tune gene expression is one of the key mile-stones in bioengineering, synthetic biology, and advanced medicine. Since the effects of proteins or other transgene products depend on the dosage, controlled gene expression is required for any ap-plications, where even slight fluctuations of the transgene product impact its function or other critical cell parameters. In this context, physical techniques demonstrate optimistic perspectives, and pulsed electric field technology is a potential candidate for a noninvasive, biophysical gene regulator, exploiting an easily adjustable pulse generating device. We exposed mammalian cells, transfected with a…
Dielectric breakdown of fast switching LCD shutters
Fast liquid crystal optical shutters due to fast switching, vibrationless control and optical properties have found various applications: substitutes for mechanical shutters, 3D active shutter glasses, 3D volumetric displays and more. Switching speed depends not only on properties of liquid crystal, but also on applied electric field intensity. Applied field in the shutters can exceed >10 V/micron which may lead to dielectric breakdown. Therefore, a dielectric thin film is needed between transparent conductive electrodes in order to reduce breakdown probability. In this work we have compared electrical and optical properties of liquid crystal displays with dielectric thin films with thickne…
Magnetotransport Studies of Encapsulated Topological Insulator Bi2Se3 Nanoribbons
This research was funded by the Latvian Council of Science, project “Highly tunable surface state transport in topological insulator nanoribbons”, No. lzp-2020/2-0343, and by the European Union’s Horizon 2020 research and innovation program, Grant Agreement No. 766714/ HiTIMe. Institute of Solid-State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.