6533b859fe1ef96bd12b8082

RESEARCH PRODUCT

Porous inorganic–organic hybrid material by oxygen plasma treatment

Susanna AuraTimo SajavaaraSami FranssilaMikko LaitinenVille Jokinen

subject

Materials scienceMechanical Engineeringtechnology industry and agricultureAnalytical chemistryRutherford backscattering spectrometryElectronic Optical and Magnetic MaterialsChemical engineeringMechanics of MaterialsSputteringEtching (microfabrication)Electrical and Electronic EngineeringThin filmReactive-ion etchingPorous mediumHybrid materialPlasma processing

description

In this paper, we present the pore formation on inorganic–organic hybrid material, ORMOCER©, by reactive ion etching. ORMOCERs are composed of inorganic backbone where organic side groups are attached by cross-linking. Etching of ORMOCER in oxygen plasma generates porous materials with different pore sizes depending on the etching parameters. In addition to planar films, this pore formation process is applicable to micro and nanostructures. Characteristics of porous materials are evaluated by contact angle measurement, scanning electron microscopy, Fourier transform infrared-attenuated total reflectance spectroscopy, time-of-flight elastic recoil detection analysis and Rutherford backscattering spectrometry. Based on these analyses, it can be concluded that carbon is depleted in the plasma process and oxygen plasma converts the surface of the hybrid film to a more SiO2-like material. Area selective pore formation is also possible by using a metallic etch mask. The porous material is stable enough to allow further processing, e.g. sputtering, plasma-enhanced chemical vapor deposition and atomic layer thin film deposition. This method may thus be used in different applications in fluidics, optics and elsewhere in micro and nanotechnology.

https://doi.org/10.1088/0960-1317/21/12/125003