6533b859fe1ef96bd12b8131
RESEARCH PRODUCT
Magnetism and Hund's Rule in an Optical Lattice with Cold Fermions
Stephanie ReimannK. KarkkainenM. ManninenMagnus O. Borghsubject
PhysicsCondensed Matter::Quantum GasesOptical latticeSolid-state physicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Physics and AstronomyFermionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter - Other Condensed MatterQuantum dotMesoscale and Nanoscale Physics (cond-mat.mes-hall)AtomAntiferromagnetismPhysics::Atomic PhysicsQuantumQuantum tunnellingOther Condensed Matter (cond-mat.other)description
Artificially confined, small quantum systems show a high potential for employing quantum physics in technology. Ultra-cold atom gases have opened an exciting laboratory in which to explore many-particle systems that are not accessible in conventional atomic or solid state physics. It appears promising that optical trapping of cold bosonic or fermionic atoms will make construction of devices with unprecedented precision possible in the future, thereby allowing experimenters to make their samples much more "clean", and hence more coherent. Trapped atomic quantum gases may thus provide an interesting alternative to the quantum dot nanostructures produced today. Optical lattices created by standing laser waves loaded with ultra-cold atoms are an example of this. They provide a unique experimental setup to study artificial crystal structures with tunable physical parameters. Here we demonstrate that a two-dimensional optical lattice loaded with repulsive, contact-interacting fermions shows a rich and systematic magnetic phase diagram. Trapping a few (N =< 12) fermions in each of the single-site minima of the optical lattice, we find that the em shell structure in these quantum wells determines the magnetism. In a shallow lattice, the tunneling between the lattice sites is strong, and the lattice is non-magnetic. For deeper lattices, however, the shell-filling of the single wells with fermionic atoms determines the magnetism. As a consequence of Hund's first rule, the interaction energy is lowered by maximizing the number of atoms of the same species. This leads to a systematic sequence of non-magnetic, ferromagnetic and antiferromagnetic phases.
year | journal | country | edition | language |
---|---|---|---|---|
2007-02-21 |