6533b859fe1ef96bd12b82e9
RESEARCH PRODUCT
Pinning of a kink in a nonlinear diffusive medium with a geometrical bifurcation: Theory and experiments
Saverio MorfuJean-marie BilbaultPatrick Marquiésubject
propagation failure[ PHYS.COND.CM-DS-NN ] Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]Saddle-node bifurcationBifurcation diagram01 natural sciences010305 fluids & plasmasBifurcation theory[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]NagumoLattice (order)0103 physical sciences[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]010306 general physicsEngineering (miscellaneous)Nonlinear Sciences::Pattern Formation and SolitonsBifurcationMathematicsCouplingApplied MathematicsNonlinear latticeneural networks[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsNonlinear systemClassical mechanicsModeling and SimulationNonlinear dynamicsdescription
International audience; We study the dynamics of a kink propagating in a Nagumo chain presenting a geometrical bifurcation. In the case of weak couplings, we define analytically and numerically the coupling conditions leading to the pinning of the kink at the bifurcation site. Moreover, real experiments using a nonlinear electrical lattice confirm the theoretical and numerical predictions.
year | journal | country | edition | language |
---|---|---|---|---|
2004-01-01 |