6533b859fe1ef96bd12b82e9

RESEARCH PRODUCT

Pinning of a kink in a nonlinear diffusive medium with a geometrical bifurcation: Theory and experiments

Saverio MorfuJean-marie BilbaultPatrick Marquié

subject

propagation failure[ PHYS.COND.CM-DS-NN ] Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]Saddle-node bifurcationBifurcation diagram01 natural sciences010305 fluids & plasmasBifurcation theory[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]NagumoLattice (order)0103 physical sciences[ NLIN.NLIN-PS ] Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS][PHYS.COND.CM-DS-NN]Physics [physics]/Condensed Matter [cond-mat]/Disordered Systems and Neural Networks [cond-mat.dis-nn]010306 general physicsEngineering (miscellaneous)Nonlinear Sciences::Pattern Formation and SolitonsBifurcationMathematicsCouplingApplied MathematicsNonlinear latticeneural networks[SPI.TRON]Engineering Sciences [physics]/Electronics[ SPI.TRON ] Engineering Sciences [physics]/ElectronicsNonlinear systemClassical mechanicsModeling and SimulationNonlinear dynamics

description

International audience; We study the dynamics of a kink propagating in a Nagumo chain presenting a geometrical bifurcation. In the case of weak couplings, we define analytically and numerically the coupling conditions leading to the pinning of the kink at the bifurcation site. Moreover, real experiments using a nonlinear electrical lattice confirm the theoretical and numerical predictions.

https://hal.archives-ouvertes.fr/hal-00651433