6533b85afe1ef96bd12b8c1d

RESEARCH PRODUCT

An evolutionary Haar-Rado type theorem

Rudolf RainerThomas StaninJarkko Siltakoski

subject

osittaisdifferentiaaliyhtälötGeneral Mathematics010102 general mathematicsBoundary (topology)variaatiolaskentaAlgebraic geometryType (model theory)01 natural sciencesParabolic partial differential equationOmegaModulus of continuityConvexity010101 applied mathematicsCombinatoricsNumber theory0101 mathematicsMathematics

description

AbstractIn this paper, we study variational solutions to parabolic equations of the type $$\partial _t u - \mathrm {div}_x (D_\xi f(Du)) + D_ug(x,u) = 0$$ ∂ t u - div x ( D ξ f ( D u ) ) + D u g ( x , u ) = 0 , where u attains time-independent boundary values $$u_0$$ u 0 on the parabolic boundary and f, g fulfill convexity assumptions. We establish a Haar-Rado type theorem: If the boundary values $$u_0$$ u 0 admit a modulus of continuity $$\omega $$ ω and the estimate $$|u(x,t)-u_0(\gamma )| \le \omega (|x-\gamma |)$$ | u ( x , t ) - u 0 ( γ ) | ≤ ω ( | x - γ | ) holds, then u admits the same modulus of continuity in the spatial variable.

http://urn.fi/URN:NBN:fi:jyu-202104092316