6533b85afe1ef96bd12b8cc9
RESEARCH PRODUCT
Metal-Insulator Transition of Solid Hydrogen by the Antisymmetric Shadow Wave Function
Thomas D. KühneFrancesco CalcavecchiaFrancesco Calcavecchiasubject
Quantum Monte CarloGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronic structure01 natural sciencesSuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsSolid hydrogen0103 physical sciencesShadowPhysical and Theoretical ChemistryMetal–insulator transition010306 general physicsWave functionMathematical PhysicsPhysicsCondensed Matter - Materials ScienceQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Antisymmetric relationCondensed Matter - SuperconductivityMaterials Science (cond-mat.mtrl-sci)Metallic hydrogenComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnology3. Good healthQuantum electrodynamics0210 nano-technologyQuantum Physics (quant-ph)Physics - Computational Physicsdescription
We revisit the pressure-induced metal-insulator-transition of solid hydrogen by means of variational quantum Monte Carlo simulations based on the antisymmetric shadow wave function. In order to facilitate studying the electronic structure of large-scale fermionic systems, the shadow wave function formalism is extended by a series of technical improvements, such as a revised optimization method for the employed shadow wave function and an enhanced treatment of periodic systems with long-range interactions. It is found that the superior accuracy of the antisymmetric shadow wave function results in a significantly increased transition pressure.
year | journal | country | edition | language |
---|---|---|---|---|
2016-04-19 |