6533b85afe1ef96bd12b8d35
RESEARCH PRODUCT
Disruption of TCF/β-Catenin Binding Impairs Wnt Signaling and Induces Apoptosis in Soft Tissue Sarcoma Cells
Silvia Calabuig-fariñasIrene Felipe-abrioJavier Martin-brotoRafael RamosOliver VöglerAntònia Obrador-heviaJosefa TerrasaRegina AlemanyEsther Martinez-fontsubject
0301 basic medicineCancer ResearchCell SurvivalAntineoplastic AgentsApoptosisPyrimidinonesBiology03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansDoxorubicinViability assayWnt Signaling Pathwaybeta CateninCell ProliferationTriazinesCell growthCell CycleMesenchymal stem cellWnt signaling pathwayDrug SynergismSarcomaCell cycleMolecular biology030104 developmental biologyOncologyDoxorubicinCell culture030220 oncology & carcinogenesisCateninCancer researchTCF Transcription FactorsProtein Bindingmedicine.drugdescription
Abstract Soft tissue sarcomas (STS) are malignant tumors of mesenchymal origin and represent around 1% of adult cancers, being a very heterogeneous group of tumors with more than 50 different subtypes. The Wnt signaling pathway is involved in the development and in the regulation, self-renewal, and differentiation of mesenchymal stem cells, and plays a role in sarcomagenesis. In this study, we have tested pharmacologic inhibition of Wnt signaling mediated by disruption of TCF/β-catenin binding and AXIN stabilization, being the first strategy more efficient in reducing cell viability and downstream effects. We have shown that disruption of TCF/β-catenin binding with PKF118-310 produces in vitro antitumor activity in a panel of prevalent representative STS cell lines and primary cultures. At the molecular level, PKF118-310 treatment reduced β-catenin nuclear localization, reporter activity, and target genes, resulting in an increase in apoptosis. Importantly, combination of PKF118-310 with doxorubicin resulted in enhanced reduction of cell viability, suggesting that Wnt inhibition could be a new combination regime in these patients. Our findings support the usefulness of Wnt inhibitors as new therapeutic strategies for the prevalent STS. Mol Cancer Ther; 16(6); 1166–76. ©2017 AACR.
year | journal | country | edition | language |
---|---|---|---|---|
2017-03-14 | Molecular Cancer Therapeutics |