6533b85afe1ef96bd12b8d63

RESEARCH PRODUCT

Nonlinear balayage on metric spaces

Jana BjörnAnders BjörnTero MäkäläinenMikko Parviainen

subject

Pure mathematicsMatematikBalayageApplied MathematicsMathematical analysisPoincaré inequalityBoundary (topology)Measure (mathematics)symbols.namesakeMetric spaceMetric (mathematics)Obstacle problemsymbolsBalayage; Boundary regularity; Continuity; Doubling measure; Metric space; Nonlinear; Obstacle problem; Perron solution; p-harmonic; Polar set; Poincaré inequality; Potential theory; SuperharmonicAnalysisMathematicsMathematicsPolar set (potential theory)

description

We develop a theory of balayage on complete doubling metric measure spaces supporting a Poincaré inequality. In particular, we are interested in continuity and p-harmonicity of the balayage. We also study connections to the obstacle problem. As applications, we characterize regular boundary points and polar sets in terms of balayage. Original Publication:Anders Björn, Jana Björn, Tero Mäkäläinen and Mikko Parviainen, Nonlinear balayage on metric spaces, 2009, Nonlinear Analysis, (71), 5-6, 2153-2171.http://dx.doi.org/10.1016/j.na.2009.01.051Copyright: Elsevier Science B.V., Amsterdam.http://www.elsevier.com/

10.1016/j.na.2009.01.051http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19049