6533b85afe1ef96bd12b95bc
RESEARCH PRODUCT
Learning User's Confidence for Active Learning
Jordi Munoz-mariDevis Tuiasubject
FOS: Computer and information sciencesComputer Science - Machine LearningActive learning (machine learning)Computer scienceComputer Vision and Pattern Recognition (cs.CV)SVM0211 other engineering and technologiesComputer Science - Computer Vision and Pattern RecognitionContext (language use)02 engineering and technologyMachine learningcomputer.software_genreTask (project management)Machine Learning (cs.LG)Classifier (linguistics)0202 electrical engineering electronic engineering information engineeringFOS: Electrical engineering electronic engineering information engineeringbad statesElectrical and Electronic Engineeringphotointerpretationuser's confidence021101 geological & geomatics engineeringActive learning (AL)Pixelbusiness.industryRank (computer programming)Image and Video Processing (eess.IV)very high resolution (VHR) imagery020206 networking & telecommunicationsElectrical Engineering and Systems Science - Image and Video ProcessingClass (biology)General Earth and Planetary SciencesArtificial intelligenceHeuristicsbusinesscomputerdescription
In this paper, we study the applicability of active learning in operative scenarios: more particularly, we consider the well-known contradiction between the active learning heuristics, which rank the pixels according to their uncertainty, and the user's confidence in labeling, which is related to both the homogeneity of the pixel context and user's knowledge of the scene. We propose a filtering scheme based on a classifier that learns the confidence of the user in labeling, thus minimizing the queries where the user would not be able to provide a class for the pixel. The capacity of a model to learn the user's confidence is studied in detail, also showing the effect of resolution is such a learning task. Experiments on two QuickBird images of different resolutions (with and without pansharpening) and considering committees of users prove the efficiency of the filtering scheme proposed, which maximizes the number of useful queries with respect to traditional active learning.
year | journal | country | edition | language |
---|---|---|---|---|
2013-01-01 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING |